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Introduction

The purpose of this paper is to compare and contrast two of the most frequently used formal methods in
design: the Vienna Development Method (VDM) and Z.  Hayes [14] has provided a fairly thorough
comparison of the appearances, data types, states, initialization, operations, syntax, preconditions, and
exception handling of the two methods.  These comparisons are summarized.  Tool support for each
method is compared and contrasted, and the results of applying these two methods in practice is
presented.  Formal methods are generally believed to reduce development costs and reduce defects in
operational software.  Practical experience with these methods is examined to see if the facts support this
hypothesis.

Formal methods, in the sense of software development, are mathematically based techniques used to
precisely describe a system.  They can be applied throughout the development of a system and involve the
use of refinement techniques and proofs of correctness at each stage to insure that the current specification
completely and correctly refines the previous specification. Formal methods can also be used to ensure
unsafe or insecure states cannot arise in any system satisfying a formal specification.

Formal methods grew out of program proving techniques, early examples of which are Edsger Dijkstra’s
predicate transformers and Harlan Mills’ function approach. The syntax of predicates and function
specifications drew on a mixture of mathematical logic and set theory, but this mathematical background
was initially not fully formalized. Gradually formal methods have come to emphasize formal
specifications. The development of formal methods has been accompanied by the development of logic
customized for system development. For example, temporal logic includes operators to indicate that a
proposition is always true, is true until some other proposition becomes true, or will be eventually true, in
addition to the usual operators in the propositional calculus of negation, disjunction, conjunction,
implication, and equivalence. Larch, Communicating Sequential Processes (CSP), Petri nets, and State
Charts are all examples of formal methods.

VDM and Z seem to be the two most popular and most frequently used formal methods for specifications.
They are the most frequently referenced methods in the literature, have the most world wide web pages
addressing their use, and are among the few methods for which ISO standards exist. The focus of this
paper is on comparing and contrasting these two methods.

How, where and why formal methods have been applied is examined in the remainder of this paper. VDM
and Z are compared and contrasted based on their syntax and semantics and based on real field use of the
two methods. The last section examines the return on investment associated with the use of these
methods. Comparisons are shown in tabular fashion with necessary supporting text.

Traditional Uses of Formal Methods

Formal methods are traditionally used when a system has correctness as a concern, such as in safety-
critical and security-critical systems, systems in which the cost of system failure is catastrophic, and
systems where standards organizations mandate their use ([8], [9], [11], [12], [15], [26]).  As stated by
Gerhart, Craigen and Ralsten [8], formal methods are primarily used for:

• Quality assurance for systems that require a high degree of confidence, auditable information,
and targets of low of zero error rates

• Developing a better understanding of an application domain and communicating that
understanding
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• Providing evidence of best practice

• Systems that require structure recovery or functional enhancement.

Formal methods are most frequently used to capture and define system and functional requirements.
Formal methods have been used for safety and security-critical purposes in:

• Certifying the Darlington Nuclear Generating Station plant shutdown system [9]

• Designing the software to reduce train separation in the Paris Metro [9]

• Developing a collision avoidance system for United States airspace [9]

• Achieving clearance to carry sensitive information through an internet gateway [9]

• Assuring safety in the development of programmable logic controllers [11]

• Developing a water level monitoring system [27]

• Developing an air traffic control system [12].

Formal methods have been used as an aid in the specification of an oscilloscope [3], in the development
of IBM’s Customer Information Control System transaction processing system [16], and in development
of IBM’s Cobol Structuring Facility [20].  Formal methods have also been used for design verification
[17] of a RISC processor [25] and in standards development [1].

Experience with formal methods in the United States includes Cleanroom Software Engineering; research
at the Naval Research Laboratory, such as the Software Cost Reduction project; various NASA projects;
and academic research. Most of the formal methods experience documented in the open literature,
however, has largely taken place in European countries, especially the United Kingdom.  For that matter,
there are no technical journals within the United States devoted to Formal Methods.  The main English-
language journals are in the United Kingdom.

Use of Formal Methods in Design

Decomposition and refinement are two important elements of the design of software systems.
Decomposition involves the process of dividing a system into smaller elements or modules.  Refinement
involves specification at different levels of abstraction, and showing that a specification at a lower level
satisfies a requirement at a higher level.

Formal methods, such as Z and VDM, are often used primarily for requirements specification, not design.
Traditional formal specification languages, such as Z, VDM, Larch, and Lamport’s transition axiom
method are methods, however, that are well suited to the software design process [27]. Traditional formal
specification languages can be, and have been, used to specificy module interfaces.  Implementers of
modules can implement a module without knowledge of the specifics of called modules.  In addition,
implementers of a called module can implement its specification without knowledge of the calling
module, as long as the interface remains the same.  Traditional formal methods are used to prove
satisfaction of requirements arising in the refinement of a design. Formal methods are also used for
procedural specifications of system functionality

However formal methods cannot be used for all aspects of system design (e.g. user interface design) and
most projects that employ formal methods utilize a combination of traditional and formal methods to
complete the design.  Luqi and Goguen [21] state that formal methods do not yet handle large and
complex system development.  Practitioners of formal methods consider formal methods appropriate for
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proving that programs satisfy certain mathematical properties of a system.  The gaps between formal
specifications and code are still great.  Luqi and Goguen conclude that formal methods should play a part
in reliability. A British Air Traffic Control system named the Central Control Function (CCF) Display
Information System (CDIS), a security-critical system, and a development of Programmable Logic Chips
(PLCs) illustrate the impacts of formal methods on design.

As described in Hall [12], Fenton and Pfleeger [4], and Pfleeger and Hatton [23], the design of the CDIS,
a system with safety-critical requirements, incorporated the use of traditional and formal methods.  They
concluded that formal design yielded highly reliable code.  The design of this system was expressed in
four parts with a design overview document to connect the parts:

• The application code was designed using VDM specifications, created as refinements of the
core requirements specification.

• The design specification of this system’s local area network used a mixture of VDM and the
Calculus of Communicating Systems (CCS).

• Concurrency requirements were derived by using Finite State Machines.

• The user interface was described in pseudo-code.

Larsen, Fitzgerald, and Brookes [19] assessed the impact of introducing a modest amount of formal
specification into an existing development process for a security-critical system.  The study involved the
parallel development by two separate engineering teams of a system component called the trusted
component.  One team developed it utilizing traditional methods.  The other team augmented their
traditional methods with formal specifications wherever they felt it appropriate.  They used VDM during
the design phase to specify type definitions and procedural functionality.  Larsen observed during design
reviews that formal software design was specified at a higher level of abstraction than would normally be
expected.  This means that more design decisions would have to be made by the implementor - relying on
the programmer to make design decisions is a controversial issue.

Halang and Kramer [11] utilized formal methods for the design of programmable logic chips (PLCs).
PLCs are replacing hard-wired switching networks in a range of applications.  They used Obj and high-
level Petri-net models to specify requirements and designs of the system. Formal requirements were
converted to function or black boxes (blocks) in the design, and the blocks were interconnected to form a
complex program.  Petri net models of the function block diagrams, which include algebraic interface
specifications, were used to determine the static and dynamic properties of both distributed and
concurrent programs.  The designs were verified against the critical requirements using proof techniques
utilizing the Obj3 system.  They observed that formal requirements and design specifications make it
possible to reuse function blocks and the proofs to verify them.  Formal specifications and designs were
shown to demonstrate the consistency between the specifications and the code for all possible data inputs.
They also observed that certification authorities can use formal verification techniques to show a
program’s dependability and to prove the correctness of the entire program with respect to its
requirements and design specifications
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Comparison of Method Characteristics

Formal methods can be compared on any number of charactistics.  Table 1 provides a comparison of Z
and VDM based on the most important characteristics of the specification languages ([6], [14], [27], [28]):

• All formal methods are based in mathematics. Some methods are based on set theory and first
order predicate calculus. Others are based on temporal logic, which is an extension of
propositional logic to fomalize how the truth values of some propositions alter with the time at
which they are evaluated.  Both VDM and Z are based on set theory and first order predicate
calculus.

• Formal methods utilize either a property-oriented or model-oriented approach and have
different levels of rigor.  Model-oriented formal methods specify system behavior by the
construction of a mathematical model with an underlying state (data) and a collection of
operations on that state.  Property-oriented formal methods define system behavior indirectly
by stating a set of properties, usually in the form of axioms, that the system must satisfy.
VDM and Z are both of the model-oriented type.

• Both VDM and Z are only used to specify the functional aspects of systems. Neither support
all aspects of design.

• VDM and Z differ in their appearance on the page as well.  VDM specifications are heavily
loaded with keywords (e.g. ext, rd, wr, dom, post).  The boxes and schemas of Z distinguish
its appearance from VDM’s.

• Z provides a schema calculus for combining specifications, for example, to handle error
handling or status information.  VDM provides no similar mechanism.

• The syntax of Z and VDM are different in defining before and after states of variables.

• Inputs and outputs are also distinguished differently in the syntax of Z and VDM.

• VDM and Z have different methods for describing whether variables can be changed or are
read-only.

• VDM explicitly handles exception handling.  Z does not.

In summary, although different in syntax and structure, Z and VDM do not differ radically from one
another.  They are similar in their foundations and goals, and both allow the specifier to state requirements
precisely and refine these specifications into designs correctly
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Table 1:  Comparison of VDM and Z Characteristics

Characteristic VDM Z

Mathematical Basis • Set Theory • Set Theory
• First Order Predicate • First Order Predicate

Calculus Calculus

Model or Property Oriented Model-Oriented Model-Oriented

Specified Properties Behavior (functionality) and Behavior (functionality) and
design of sequential programs design of sequential programs

Design Aspects Not Supported • System Timing • System Timing
• Concurrency • Concurrency
• User Interface • User Interface

Page Appearance Differences Heavily Keyword oriented Boxes or Schemas
(e.g. pre-, post-, invariants)

Structuring Mechanisms None Schema Calculus which allows
various schemas to be
combined to form new schemas

Specification of State Changes • Before: hooked variables • Before: undecorated variables
• After: unhooked variables • After: primed variables

Identification of Inputs No explicit way of specifying • Inputs: variable names
and Outputs ending in “?”

• Outputs: variable names
ending in “!”

Distinguishing Constants Keyword wr for variables D for variables that can change.
and Variables that can change.

Keyword rd for variables X for variables that are read
that are read only only.

Exception Handling Support Has notation to mark and Not explicitly supported in
define error conditions notation.  Defined by

specifying
an operation using
structuring mechanisms.
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Comparison of Tool Support

Tool support provided for VDM and Z are shown in Table 2.  Using formal methods and specification
languages in practice requires that any candidate method have tool support in one or more of the
following categories:

• Editing Facilities.  Tools in this class are used to input and edit formal specifications.

• Document Printing.  If computers are used to capture formal specifications, methods need to be
provided to print the specifications in a “pretty” format.  LATEX, troff, and postscript appear to
be the most popular formats supported.

• Visual Specification.  Some tools are available that allow specifiers to specify requirements
using pictures or graphics.  These tools then automatically produce and maintain the specifica-
tions in a target formal specification language.

• Syntax Checking.  Syntax checking tools check specifications for grammatical correctness.  Most
syntax checkers allow specifications to be imported from source files in ASCII or mathematical
syntax.

• Semantic Analysis.  Semantic analyzers carry out checks on the well-formedness of the specifi-
cations, including checking declaration scope, use of state variables, use of hooked and bang
values, and use of record types.

• Proof Support.  Proof checkers and theorem provers assist users in deriving and managing
formal proofs.

• Code Generation.  Tools are beginning to appear which generate computer language source
code representations of the specifications.

The fact that similar tool support exists for both Z and VDM may indicate that both methods are
equally popular in the formal methods community.
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Table 2:  Tool Support Comparison

Class of Tool VDM Tools Available Z Tools Available

Editing Facilities • VDM through Pictures • IBM - Z Tool
(VtP) by IDE • Computer Aided Design

in Z (CADiZ)

Document Printing • SpecBox (supports LAT
E
X • Computer Aided Design

Output) in Z (CADiZ) - supports
troff output in UNIX

Visual Specification • VDM through Picture (VtP) • None Found
by IDE

Syntax Checking • SpecBox • Computer Aided Design
• Delft VDM SL in Z (CADiZ)

• ZTC, a free tool for PC
and UNIX

• Fuzz, a commercial product
for DOS and UNIX

Semantic Analysis • SpecBox • Computer Aided Design
• Delft VDM SL in Z (CADiZ)

Proof Support • mural - validate a formal • Zola from Imperial
spec against an informal Software Technology, Inc.
description proof assistant

Code Generation • VDM Domain Compiler • None Found.

Comparison from Field Experience

The formal methods community faces a challenge to demonstrate and document positive benefits and
positive return on investment from the application of formal methods.  This challenge must be met for
formal methods to receive acceptance and use as sound engineering methods within the United States.  No
single formal method has been applied throughout a total system development to date.

Two systems, however, that were specified and designed using Z and VDM have quantitative results
documented in the technical literature:

• The Customer Information Control System (CICS), a transaction processing system developed
using Z by IBM in the United Kingdom.

• The Central Control Function (CCF) Display Information System (CDIS), developed by Praxis
using VDM.

Table 3 compares these two projects and their reported results. These two systems are quite different
applications. One is a general purpose On-Line Transaction Processing (OLTP) system, and the other is a
custom, real-time system with severe constraints.
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The principal goal of this comparison is to identify and compare lessons-learned from applying each
method and to examine the impact of each method on rework and development costs.  Significant cost
savings in a development project can be achieved through an increase in productivity, a reduction in the
number of defects induced into a system, or the detection and resolution of defects closer to the point of
insertion of the defects.  Finding and resolving a defect after the product is released increases the repair
from 100 to 250 times the cost of finding and resolving a defect during the design or coding phase [22].

Certainly no firm conclusions can be drawn from just one application of each method.  However, some
interesting comparisons between the methods can be seen by examining Table 3 and by comparing this
data with industry standards and experience with Cleanroom developments:

• The size of the formal design specification in pages per Thousand Source Lines Of Code
(KSLOC) was approximately 2.75 times greater in the Z specification than in the VDM
specification.  This difference could have been caused by a number of factors, such as, the
differences in programming languages used with each method (C vs. PLAS) and the
experience of the VDM team and their customer with the formal method used.

• The defect rate of 11 defects/KSLOC as reported by the VDM team compares unfavorably to
an industry average of 7 defects/KSLOC [22].  I found this statistic quite surprising and would
have expected this statistic to have been closer to reports from Cleanroom experience [22],
where defect rates less than 1 defect/KSLOC have been reported.  The approximate 40%
reduction in defect rates as reported from the Z application compares more favorably to
experiences of Cleanroom.  Cleanroom reports, however, greater than 85% reduction in defects
as compared to traditional methods.

• The productivity of the VDM team (13 SLOC/Day) represents an 85% improvement over industry
standards of 7 SLOC/Day [22].  By comparison, the 9% improvement as reported by the Z
project represents a fairly modest increase in productivity as compared to industry standards.

• The 0.75 defects/KSLOC found after product release from the VDM project is an improvement
over the industry average of approximately 1.0 defects/KSLOC [22].  Although the Z project
stated no explicit defect rate, if IBM was experiencing industry average defect rates after product
release prior to using formal methods, a 2.5 times improvement would result in approximately
0.30 defects/KSLOC after product release.  These numbers compare unfavorably to a post-release
defect rate of less than 0.05 defects/KSLOC [22] from Cleanroom experience.

• Both projects showed similar positive findings in terms of the severity of reported problems from
field use.  This shows that few, if any, design problems existed in the system at the point of
release of the products.  These findings are similar to observations from Cleanroom developments.

• The observed deficiencies from the CDIS project shows that VDM cannot be used to explicitly
state all requirements of a system.  Although no deficiencies were identified in the CICS project
for Z developed projects, the author of the CDIS paper had considered utilizing Z for the CDIS
project, but eliminated it from consideration because Z’s error-handling conventions were clumsy.

• The conclusions stated about formal methods from both projects were of special interest.  The
CDIS system was a project developed with a specific customer involved in the whole process;
whereas the CICS project was developed for a large class of users.  The conclusions for the CDIS
project came from the customers viewpoint.  Conclusions for the CICS project came from the
development project and management team.  The advantages stated for CDIS were expected and
confirm the objectives of formal methods: precise and comprehensive system specifications.
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Table 3:  Practical Experience with Z and VDM in Specification and Design

Comparison Factor VDM Application Z Application

Project Name Central Control Function Customer Information
(CCF) Display Information Control System (CICS)
System (CDIS)

Information Source Hall [12] Houston and King [16]

Application Type Air Traffic Control Information On-Line Transaction
System (Real Time System). Processing System.  Generic
CDIS displays information facilities can be tailored to
about incoming and outgoing business requirements by an
flights, weather conditions, Application Programming
and equipment status at Interface (API) used to invoke
airports. CICS services.

Additional Constraints • Performance: information None reported
must be displayed in 1-2
seconds of receipt.

• Availability: 99.97%
• No Single Point of Failure

Company Using Praxis IBM
Formal Method

Location of Use United Kingdom United Kingdom

Customer Base London Area and Terminal General Business Community
or System Control Centre for flights

at Heathrow and Gatwick
airports

Date of General Autumn, 1993 June, 1990
Release of

Completed System

Development Type New Development Enhancement to Existing,
22 year old, System.

Rationale for Use Safety, Life Critical System. • Clarify internal interfaces
of Formal Methods • Provide basis for future

Rationale for Choice VDM was familiar to Unknown.  Author says Z
of Method requirements team and had was selected after

been used on other projects “much research”.
for customer.
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Table 3:  Practical Experience with Z and VDM in Specification and Design (continued)

Comparison Factor VDM Application Z Application

Language Used for • VDM for operational Z
Functional Specifications and data specifications

• Entity Relationship
Diagrams for World Model

• Data Flow Diagrams for
Processing Requirements

Language Used for • Functional Design: VVSL Z
System Specifications • Process Design: Finite-State

Machines to diagram and
VVSL to characterize
complex states.

• User Interface: IBM
Presentation Manager

• LAN Design: Calculus of
Communicating Systems

Language Used for • Functional Design: VVSL Z
Designs • Process Design: Finite-State

Machines to diagram and
VVSL to characterize
complex states.

• User Interface: IBM
Presentation Manager

• LAN Design: Calculus of
Communicating Systems

Were Proofs Used? Yes, on LAN Design because No
it was such a critical element.

Language Used for C PLAS
Source Code

Total KSLOC from 197 KSLOC ~48 KSLOC
 Formal Methods

Percent of New and 100% 18% (48 KSLOC/268 KSLOC)
Modified Source Code

Resulting from
Formal Methods Design

Length of Formal 3,000 pages = 15 pages/KSLOC 2,000 pages = 42 pages/KSLOC
Design Specifications
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Table 3:  Practical Experience with Z and VDM in Specification and Design (continued)

Comparison Factor VDM Application Z Application

Defect Rates with 11 Defects/KSLOC at System Estimated 40% Reduction1

Formal Methods & Integration Test

Productivity 13 SLOC/Person-Day 9% improvement
(attributed to less rework
during development)

Defects Reported by 0.75 Defects/KSLOC 2.5 times reduction after
Customers on Formally 8 months of operation

Developed Code

Severity of Customer- Few faults were specification Much less than for other
Reported Problems or requirements based, and projects

they were less costly to repair.

Requirements:
Observed Deficiencies of • Cannot distinguish between None reported
Selected Formal Method essential and merely desirable

functions
• Cannot specify global

properties
• Cannot specify usability,

performance, reliability and
safety requirements.

System Spec
• Cannot specify user interface.
• No concurrency specification

Conclusions Advantages:
• Specification was • It is possible to introduce Z

comprehensive into development process
• Specification was precise without formal refinement.
• System tests derived from • Overall quality of the product

specs, so customer could see improved,as measured
level of testedness. by defects/KSLOC.

Disadvantages: • Faults were found earlier
• Difficult to get overview  in the development cycle.

from formal methods.
• Difficult to interpret spec

1 The defect rate improvement was not explicitly stated in the text of the source document.  It was
computed based on the graph shown in Figure 1, which also appeared (without the grid) in the text of the
source document.  No specific values were given for the Y-axis.  However a linear grid was overlaid on
this graph, values were interpolated from the graph, and a total percent improvement was calculated.
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Key:
PLD: Product Level Design

CLD: Component Level
Design

MLD: Module Level Design

UT:  Unit Test

PV:Functional Verification

Systest:System Test

CA: Customer Availability

Table 3 Conclusions

The conclusions I draw from Table 3 (with only one data point per formal method) is that VDM
specifications may be easier and more productive to use (based on productivity figures), but the higher
than industry average in defects that are introduced using the VDM method compares very unfavorably to
Z defect rates.  The high cost of rework [22] observed in the US software industry could, overall, make
VDM more costly to use than Z.

Detailed Financial Analysis

A previous DACS report [22] presented a detailed cost model. This model was used to analyze
development costs and cost savings from reduced rework resulting from software process improvements,
such as an increased SEI Capability Maturity Model (CMM) ranking, software inspections, software
reuse, and Cleanroom Software Engineering.  The model was implemented as a Microsoft Excel
spreadsheet.

That speadsheet model has been extended based on the data from Table 3 (which contains only one data
point for each formal method). This model can be used to compare and contrast Z and VDM with each
other, as well as with traditional software development. Results are shown in Table 4. The first column
labels the parameters and some outputs of the model. The remaining three columns represent the three
method to be compared and contrasted:  VDM, Z, and traditional software development. Each row in
Table 4 is discussed following the table.

Figure 1: Defect Rates for CICS Project
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Table 4:  Financial Comparison of Formal Methods

Formal Methods Formal Methods Traditional
VDM Z Methods

Estimated SLOC 32,000 SLOC 32,000 SLOC 32,000 SLOC
Productivity Improvement 86% 9% 0%
Estimated Effort 211.9 Person Months 361.6 Person Months 368.0 Person Months
Equivalent Cost $1,255,508 $2,142,480 $2,180,400
Average Defects/KSLOC 11 4.2 7
Expected Number of Defects 352 134.4 224

% Defects Introduced by Phase
Design 35 % 35 % 35 %
Coding 65 % 65 % 65 %

% Defects Detected by Phase
Design 47 % 48 % 40 %
Coding 41 % 42 % 35 %
Test 86 % 87 % 73 %

Defects Left for Customer 24.29 8.43 33.81
Post Release Defects/KSLOC 0.76 0.26 1.06
Maintenance Costs $242,923 $84,313 $338,083

Total Rework Costs $338,814 $177,771 $417,719
Reduction from Traditional 18.89 % 57.44 % N.A.
Methods

Total Life Cycle Costs $1,498,431 $2,226,793 $2,518,483
Reduction from Traditional 40.50 % 11.58 % N.A.
Methods

Schedule Length 19.10 Months 23.00 Months 23.18 Months
Reduction from Traditional 17.60 % 0.78 % N.A.
Methods

• The spreadsheet was designed to allow anyone to start from a problem of their own choosing.
It thus begins with an estimate of the size of the program (in SLOC) to be estimated for the
various methods.  The Intermediate COCOMO 1.1 model was used to estimate costs and
schedules. SLOC is the main cost driver in intermediate COCOMO 1.1. The example shown in
Table 4 is a medium-sized semidetached system with very high reliability requirements,
product complexity, and execution time constraints. These seem to be typical characteristics of
systems to which formal methods are applied [15].
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• The COCOMO estimates were adjusted to reflect the observed productivity gains from formal
methods. As shown in Table 3, the Z project had a 9% improvement, and the VDM project
produced 13 SLOC per person day. If one accepts that the industry average productivity is 7
SLOC per person day, VDM represents almost a doubling of productivity when compared to
traditional methods.

• Estimated effort is a COCOMO output.  Effort and schedule estimates include a planning and
requirements phase. Both VDM and Z compare favorably to traditional software development
methods, with VDM being much better than tradional methods.

• Equivalent cost is estimated based on the assumption of a cost of $5,925 per person month.
Comparisons based on equivalent cost are unchanged from comparisons based on effort.

• The average number of defects per KSLOC is an observed parameter. Traditional
developments typically observe 7 defects per KSLOC [22]. As shown in Table 3, 11 defects
per KSLOC were observed during the VDM project, and a 40% reduction was observed during
the Z project. If this 40% reduction were from the “industry average,” the Z project would
have experienced 4.2 defects per KSLOC.  The VDM values compare unfavorably to the other
methods.  The Z method experiences the best of the three.

• The defects expected is merely the product of the average number of defects per KSLOC and
the size in KSLOC. This is the number of defects introduced throughout the life cycle.

• Rework is reduced by introducing less defects and by detecting and removing defects as close
to the point of defect insertion as possible. However, the pattern of defect insertion and
removal by life cycle phase has not been reported for VDM and Z. Thus, the percent defects
introduced by phase and percent defects detected by phase are taken from data on traditional
methods. The percent defects detected by phase were uniformly increased for VDM and Z to
obtain a total percentage of defects removed that matches reported data within rounding errors.

• Applying the defect introduction and removal percentage to the expected number of defects,
one obtains the defects left for the customer.  The VDM project observed 0.75 defects per
KSLOC in defect reports by customers.  The Z project observed a 2.5 times reduction (where
the industry average is approximately 1 defect per KSLOC). The Z post release defect rate is
better than the VDM project. Both VDM and Z are better than traditional methods.

• Total rework costs are computed and compared to traditional methods.  It is assumed that
rework hours consist of 2.5 hours per defect during design and coding, 25 hours per defect
during test, and 250 hours per defect during maintenance. Rework costs are assumed to be $39
per hour. As can be seen in Table 4, VDM rework costs are reduced only somewhat from
traditional methods, while Z compares very favorably to traditional methods.

• The next block compares the total costs (development costs and rework from maintenance)
associated with software development.  The “bottom line” shows that VDM is less costly than
Z, but both VDM and Z cost less than traditional methods.

• The final block compares estimated schedule length from Cocomo.  Z has a schedule length
similar to traditional methods.  VDM has a shorter schedule than Z.
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