Softwar e quality control and prediction model

Norman F. Schneidewind

Norman F. Schneidewind, " Software quality control and prediction model for maintenance’, Annals
of Software Engineaing, Baltzer Science Publishers, Volume 9 (2000, May 2000, pp.79-101

Division d Computer and Information Sciences and Operations
Naval Postgraduate Schod

2822RamonTrail

Pebble Bead, CA 93953

Voice (831 6562719

Fax :(831) 3720445

Email: nschneid@nps.navy.mil



Abstract

We develop a quality control and prediction model for improving the quality of software
delivered by development to maintenance This model identifies modues that require priority
attention duing devel opment and maintenanceby using Booean d scriminant functions. Themode
aso predicts during development the quality that will be delivered to maintenance by using bath
point and confidence interval estimates of quality. We show that it is important to perform a
marginal analysis when making a dedsion abou how many metrics to include in a discriminant
function. If many metricsare added at once, the contribution d individual metricsisobscured. Also,
the marginal analysis provides an eff edive rule for deading when to stop adding metrics. We dso
show that certain metrics are dominant in their effeds on classfying quality and that additional
metrics are not needed to increase the acaracy of clasdficaion. Related to this property of
dominanceisthe property of concordance, which isthe degreeto which aset of metrics producesthe
same result in classfying software quality. A high value of concordance implies that additional
metricswill not make asignificant contributionto acairately classfying quality; hence thesemetrics
are redundant. Data from the Space Shuttle flight software ae used to ill ustrate the model process



1. Introduction

A key problem in maintenanceisto identify problemsin the software during development before
it reathes maintenance To thisend,we developaquality control and predictionmode that isused to
identify modues that require priority attention duing development and maintenance This is
acomplished in two adivities: validation and application. Both adivities occur during software
development. Validation is an adivity that isrequired in order to identify metrics that can identify
low quality software that requires corredive adion. Applicationisan adivity during which vali dated
metrics are gplied to control and predict software quality. During validation, we use abuld of the
software that has been developed as the source of datato compute adiscriminant function (i.e., a
statisticd methodthat isused to classify software quality) that we useto retrospedively classfy and
predict quality with spedfied acaracy, by build andmodue. Using thisdiscriminant function duing
application, we dassfy and predict the quality of new software that is being developed. We make
both pant and confidenceinterval estimates of quality. Thisisthe quality we exped to experience
during maintenance

During validation, bah quity fador (e.g., dscrepancy reports of deviations between
requirements and implementation) and software metrics (e.g., size, structural) data ae avail able;
during application, only the latter are available. During validation, we onstruct Booean
discriminant functions (BDFs) comprised of a set of metrics and their criticd values (i.e.,
threshalds). A BDF is a Bodean function consisting of AND and OR operators, modue metric
values, and metric aiticd values that is used to classfy the quality of software. A metric aiticd
value is a value in the range of the metric, estimated by using the inverse of the Kolmogorov-
Smirnov distance (to be explained) that providesathreshold betweentwo levels(e.g., highandlow)
of the quality of the software. We seled the best BDF based onits abilit y to achieve the maximum
relativeincremental quality/cost ratio. During application, if at least one of the moduesmetricshas
avaluethat excealsits criticd value, the modueisidentified as "high priority” (i.e., low quality);
otherwise, it isidentified as"low priority" (i.e., high quality). Our obediveisto identify andcorred
quality problems during devel opment so that ahigh quality product can be deli vered to maintenance,
as oppased to waiti ng until maintenance when the st of corredion would be high.

We use nonparametric statisticad methodsto: 1) identify the aiticd values of themetricsand 2
findthe optimal BDF based onits abilit y to satisfy both statistical andapplication criteria. Statistica
criteriarefer to the aility to corredly classfy the software (i.e., classfy high quality software &
high quelity and low quality software a low quality). Applicaion criteria refer to the aility to
achieve ahigh quality/cost ratio. A BDF comparesamodue's metric value with the metric'scriticd
value, for a set of metrics, in classfying the quality of the software. The BDFs provide good
acaracy (i.e., <3% error) for classfying quality fadors. These functions make fewer mistakesin
classfying software that is low quality than is the cae when linea vedors of metrics are used
becaisethe aiticd valuesprovide alditional informationfor discriminating quality. In addition,we
develop an effedive stopping rule for adding metrics to the BDF that is based on quality/cost
considerations.

Weshow that it isimportant to perform amargina analysis(i.e., identificaion d theincrementa
contribution o ead metric to improving quality) when making adedsionabou how many metrics



toincludein thediscriminant function.If many metricsare alded to the set at once, the contribution
of individual metricsisobscured. Also, themarginal analysisprovidesan effediverulefor deading
when to stop adding metrics. We dso show that certain metrics are dominant in their effeds on
classfying quality for Space Shuttle software (i.e., daminant metrics make fewer mistakes in
classfying metricsthan norrdominant ones) andthat additional metrics are not needed to acarately
classfy quality. Related to the property of dominanceisthe property of concordance, which isthe
degreeto which a set of metrics produces the same result in classfying software quality. A high
value of concordance implies that additional metrics will not make asignificant contribution to
acarately classfying quality; hence these metrics are redunchnt.

The @ntributions of this research are the foll owing: 1) both statisticd and applicaion criteria
shoud be used to determine which metrics and hov many metrics sioud be used to classfy
maintenance quality; 2) a marginal analysis s1oud be performed on ead metric to determine
whether itsadditionwill i ncrease the quality/cost ratio; 3) the Bodean discriminant function(BDF)
isanew typeof discriminant for classfying maintenancequality; 4) our applicaion d Kolmogorov-
Smirnov (K-S) distance is a new way to determine ametric's criticd value; and 5 we have
developed anew stoppng rulefor adding metrics:. theratio of therelativeimprovement in quality to
the relative increase in cost.

1.1. Related research

Our model is one of a dassof models concerned with the dassficaion d quality, sometimes
referred to astheidentification d fault-prone modues. Porter and Selby [199( used clasgficaion
trees to partition multi ple metric value spaceso that a sequence of metrics andtheir criticd values
could be identified that were asciated with either high quality or low quality software. This
tedhnique is closely related to our approach of identifying a set of metrics andtheir critica values
that will satisfy quality and cost criteria. However, we use statisticd analysis to make the
identification.

Briandet al. [1997 used logistic regressonto classfy moduesasfault-prone or nat fault-prone
as a function d various objed-oriented metrics. In another example of logistic regresson,
Khoshgoftaa and Allen [1997used it to classfy modues as fault-prone or not fault-prone & a
function o faults, requirements, performance, and dacumentation software troulde report metrics.
While one of our objedivesis smilar -- classfy moduesaseither high quality or low quality -- we
derive from this binary classficaion several predictive continuous quality and cost metrics. These
metrics are used to predict the quality of software that will be delivered by development to
maintenance and the st of adhieving it.

Khaoshgoftaa et a. [19963] used nonm@rametric discriminant analysisin ead iteration d their
military system projed to predict fault-prone moduesin the next iteration. Thisapproach provided
an advance indicaion d reliability and the risk of implementing the next iteration. They also
condwcted asimilar study involving atelecommunicaions application, again using nonparametric
discriminant analysis, to classfy modues as either fault-prone or nat fault-prone [Khoshgoftaa et
a. [19960. Our approadh hes the same objedive but we produce BDFs in terms of the original
metrics as oppased to using density functions as discriminators.



Khashgoftaa and Allen [1999 have dso developed modelsfor ranking moduesfor reliability
improvement acarding to their degree of fault-pronenessas oppased to whether they are fault-
prone or not. They used Alberg Diagrams [Ohlsson and Alberg 1999 that predict percentage of
faultsasafunction d percentage of modues by ordering moduesin deaeasing order of faultsand
nating the awmulative number of faults correspondng to various percentages of modues. The
imperative in safety criticd systems like the Space Shuttle is to investigate all susped modues
becaise even the modue with the lowest a priori reliability risk could pose asafety hazard in
operation.Our previousreseach showed avery high association between moduefail uresand metric
values that exceeded the aiticd values [Schneidewind 1999, as we will show later.

The following topics are @mvered: Discriminative Power model, approach to validation, and
quality control and predictionappli caions of themodel, Sedion2; detail ed description d validation
methoddogy, Sedion 3; comparison d validation with application results for quality control and
prediction, Seaion4; quality point and confidenceinterval estimates, Sedion5; comparison d BDF
and linea discriminant function quality classficaion results, Sedion 6; development metric
charaderistics of modues that falled duing maintenance, Sedion 7; and conclusions abou the
contributions of the model to quality control and prediction and the results obtained to date in
applying it to the Space Shuttle, Sedion 8.

2. Discriminative power model
2.1. Discriminative power validation

Using our metrics validation methoddogy [IEEE 1998 Schneidewind 1992, and the Space
Shuttleflight software metricsand dscrepancy reports (DRs), we vali date metricswith resped to the
quality fador drcount. Thisisthe number of discrepancy reports written against amodue. In brief,
thisinvalves condicting statisticd teststo determine whether thereis ahigh degreeof association
between drcount and candidate metrics. As shown in Figure 1, we validate metrics on ore randam
sample (Validation Sample) of 100modues from Build 1 and apply the validated metricsto three
randam samples (Applicaion Samples) of 100 modues ead from Build 2 that are both dgoint
among themselves and from the Vaidation Sample, drawn from a popuation d 1397modues of
Soace Shuttle flight software. Nikora and Munson argue for the need of a measurement baseline
against which evolving systems may be ammpared [Nikoraand Munson 1998. Our basdlineisBuild
1in Figure 1. The measurement results from Build 1 provide the data source for controlli ng and
predicting the quality deli vered to maintenance andfor comparing predicted with adua qudity, orce
the latter is known. Next, we define Discriminative Power.

2.1.1. Discriminative power

Given the dements M;; of a matrix of n modues and m metrics (i.e., nm metric values), the
elements MCj of avedor of m metric aiticd values, the dements F, of avedor of n quality fador
values, andscdar FC of quality fador criticd value, Mj; must be eleto discriminatewith resped to
F, for aspedfied FC, as hown in the foll owing relation:

Mij>MCj=>Fi>FCand (1)



Mij < MCj@FiS FC

fori=1,2,...,n, and j=1,2,...,m with specified a, where a is the significance level of various statistical
teststhat are used for estimating the degreeto which a set of metrics can corredly classfy software
quality. In ather words, dotheindicaed metric relationsimply correspondng quality fador relations
in (1)? This criterion assesses whether MC; has sufficient Discriminative Power to be capable of
distinguishing aset of high quality moduesfrom aset of low quality modues. If thisisthe cae, we
usethe aiticd valuesin Quality Control and Prediction described below. The validation processis
illustrated in Figure 1, where the aiticd values MC; are produced in the Test phase of Build 1 by
using the metrics M;; from the Design phaese andthe quality fador F; (e.g., drcount) that is avail able
in the Test phase. Discrepancy reports are written against the software throughou devel opment but
they are nat significantly complete until the end d the Test phase for abuild duing which fail ures
are observed. The murts of discrepancy reports and metricsthat are associated with amoduewere
colleded at the completion o a build by a metrics analyzer, using the source @de a inpu. If a
discrepancy report involves multiple modues, it is counted against every modue dfeded. The
desired quality level is st by the dhoice of FC. The lower its value, the higher the quality
requirement; conversely, the higher its value, the lower the requirement. A value of zero is
appropriate for safety-criticd systems like the Space Shuttle.

It isimportant to recognize that vali dationis performed retrospedively. That is, with bah metrics
M;; and quality fador F in hand for Build 1, we can evaluate how well the metrics would have
performed if they had been applied to Build 1.1f the metrics perform well, we say they are vali dated
andit isour expedationthat they will perform adequately when applied to Build 2.(i.e., na aswell
aswhen applied to Build 1 kecause of posshbledifferencesin modue dharaderisticsbetween Build 1
and Build 2 bu better than using unvalidated metrics). Next, we describe the gplication d the
model to quality control and prediction.

2.1.2. Quality control and prediction

Quality control is the evaluation d modues with resped to predetermined criticd values of
metrics. The purpose of quality control isto all ow software managersto identify software that does
not med quality requirements ealy in the development process ® corredive adion can be taken
when the cost islow. Quality control isapplied duing the Design phaseof Build 2inFigure 1toflag
modu es below quality limitsfor detail ed inspedion. The vali dated BDFs, comprised of the metrics
M;; andtheir criticd values MC; that are obtained from Build 1,are used to either accept or rejed the
moduesof Build 2[Schneidewind 1997%; Schneidewind 1997h. At thispaint in the devel opment of
Build 2, orly the metric data M;; and MC; are avail able.

Quality predictions are used by the developer and maintainer to anticipate rather than read to
quality problems. The predictions provide indicaions of the quality of the software that would be
delivered to maintenance. Figure 1 shows the metrics controlling and predicting the quality of
software that will be deli vered to maintenanceearly in the devel opment of Build 2. Accompanied by
rigorousinspedion andtest, this processwill result inimproved quality of Build 2andthe software
that isreleased to maintenance, of which Build 2isapart. Once dl of the quality fador dataF; (e.g.,
drcount) have been colleded for Build 2, a the end d the Test phase @& hown in Figure 1, the
quality of Build 2 would be known. This, then, becomes the adual quality of Build 2 in the



maintained software.
3. Validation methodol ogy

The basis of thismodel isamethoddogy for vali dating BDFs andtheir criticd valuesthat have
the aility to dscriminate high quality from low quality. We use athree stage processfor seleding
metricsfor quality control and prediction: 1) compute aiticd values of the candidate metrics; 2) for
the set of candidate metricsand criticd values, findthe optimal combination based ongtatisticd and
applicaion criteria; and 3 apply astoppng rule for adding metrics. Table 1 provides afunctional
description d ead stage. The threestages take placeduring the Test Phase of Build 1 d Figure 1,
once dl the quality fador dataF; (e.g., drcount) are avail able. The sedionsthat foll ow provide the
detail s of the statistica analysis for eat stage.

Table 1. Functional Description of Metrics Validation Process
Statisticd Test/ Purpose Result
Procedure
Stage 1 Kolmogaov- | Compute the aiticd values of the candidate | Metrics ranked by K-S test
Smirnov(K-S) | metrics. results for inpu to Stage 2.
Stage 2 Contingency Usethe aiticd valuesobtained from Stage 1 to | Metric  sets with increasing
Table Analysis | form a set of BDFs. Use the BDFs to estimate | numbers of metrics, eah set
quality and cost of inspedion for ead set of | with estimated quality and cost
metrics, starting with one metric, andincreasing | of inspedion.
by one until the stopping rule is stisfied.
Stage 3 Stopping Rule | Add metricsto Stage 2 urtil theratio of relative | Vaidated BDFs and their
for Adding incremental quality to reative incremental | criticd values that provide the
Metrics inspedion cost reades a maximum. highest estimated quality relative
to the etimated cost of
inspedion.

3.1. Stage 1. compute critical values

Criticd values MC; are mmputed, using anew methodwe have devel oped, whichisbased onthe
Kolmogorov-Smirnov (K-S) test [Conower 197]]. This test was investigated for applicdion to
software metrics becaise of its ability to indicate the value of a metric (i.e., criticd vaue) where
maximum discrimination accurs between two samples of modues -- ore of high quality and the
other of low quality. Themethod hasconsistently yielded goodresultsfor controlli ng the quality of
Soace Shuttle software a our results will show. The K-Stest is exad for continuows distributions
and conservative (i.e., the true dpha is lessthan the spedfied value) for discrete metrics data
[Conower 1971. In addition, the large range (e.g., 0- 2316for prologue size) and fine granularity
(e.g., untsof onefor prologue size) of the metricsdata goproximate continuowsdistributions. Thus,
the K-Stest is appropriate for analyzing metrics data.



Table 2 shows the metric definiti ons, criticd values MC;, and K-S distances for four metrics of
the Validation Sample. These metrics were seleded for analysis based ontheir relatively high K-S
distance mmpared to ather metrics that had been colleded onthe Space Shuttle. The K-S method
tests whether the sample aimulative distribution functions (CDF) are from the same or different
popdations. Thetest statistic isthe maximum verticd diff erencebetween the CDFs of two samples
(e.g., the CDFsof M;; for drcount<FC and drcount>FC). If the difference is significant (i.e., a<.009,
the value of M;; correspondng to maximum CDF differenceis used for MC;. Thisrelationship is
expressed in equation (2). This concept isill ustrated in Figure 2, for the aitica value of prologue
size, wherewe show the CDFsfor drcount=0 and drcount>0. In thisexample, the aiticad valueis38.
Thisisthevaue of prologue size wherethereisthe maximum diff erencebetween the CDFs. Thisis
the value of prologue size where there is the maximum discrimination between high quality
(drcount=0 curve) andlow quality (drcount>0 curve). Metrics are alded to the BDF in the order of
their deaeasing K-S Distance

K-S(MCj)=max{ [ CDF(M;j/(Fi<FC)]-[CDF(M;j/(F>FC)]} 2

The history of changes (e.g., requirements, design, and code) and aher adivities (e.g.,
inspedions, tests, and failure and fault observations) are recrded at the beginning of a modue's
listing (i.e., prologue). The number of linesin this :dioniscdl ed the prologue size. Because this
metric records the volatility of the software, it is avery good guality discriminator, as our results
will demonstrate. A statement isan exeautabl e statement in the Hal/ S programming languagethat is
used to code the Space Shuttle flight software.

Table 2. Kolmogorov-Smirnov Distancefor drcount=0 vs. drcount>0
Validation Sample 1 (n=100modues)
Metric Definition Criticd | Distance o Rank
(symbol) (courts per modue) Vaue
prologue size (P) chapge history I.' ne murt 38 0.585 0.005 1
in modue listing
statements (S) exeautable statement court 26 0.557 | 0.005 2
etal (E1) unique operator court 10 0.492 0.005 3
nodes (N) __hoce ourt 11 0487 | 0005 | 4
(in control graph)

3.2. Sage 2: perform contingency table analysis

3.2.1. Validation contingency table

For ead BDF identified in Stage 1 we use the Contingency Table (see Table 3) and its
acompanying y° statistic [Conover 1971 to further evaluate the aility of the functions to
discriminate high quelity from low quality, from bath statisticd (e.g., values of ¥ and a) and
applicaion (e.g., ability of the metric set to corredly classfy low quality modues) standpants. In



Table 3, MC; and FC classfy moduesinto ore of four categories. Theleft column containsmodues
where nore of the metrics excealsitscriticd value; thiscondtionisexpressed withaBodear AND

function d the metrics. Thisisthe ACCEPT column, meaning that acording to the dassficaion
dedsion made by the metrics, these modues have accetable quality. The right column contains
modueswhere & least one metric excealsitscriticd value; thiscondtionisexpressed by aBodean

ORfunction d themetrics. Thisisthe REJECT column, meaning that according to the dassfication
dedsion made by the metrics, these modues have unaccetable quality. The top row contains
modues that are high quality; these modues have aquality fador that does nat exced its criticd

value (e.g., drcount=0). The bottom row contains moduesthat arelow quality; thesemodueshave a
quality fador that exceals its criticd vaue (e.g., drcount>0).

Equation (3) givesthe dgorithms for making the cél courts of modues, using the BDFs of F
and Mj; that are omputed over the n moduesfor m metrics. This equationis animplementation o
therelationgivenin (1).

Cu= CO_EJlNT FOR ((F = FC)O(Mi1 < MCy)...J(Mj £ MCy)---U(Min< MCh))

Ci= Co_EJlNT FOR ((F < FC)O((Mi2 > MC).--O(M; > MC))-..0(Mim > MCn)))

] (3)
Cz1= COUNT FOR ((F > FC)O(Mi1 < MCy)...0(Mj £ MC))...0(Mim £ MCn))

Cz2 = COUNT FOR ((F > FO) U((Miz > MCy)...0(M; > MC)---U(Min > MCh)))

for j=1,...m, and where COUNT(i)=COUNT(i-1)+1 FOR Bodean expresson true and
COUNT (i)=COUNT (i-1), otherwise; COUNT(0)=0.

The oourtscorrespondto the celsof the Contingency Table (Ci1, Ci2, Co1, andCyyp), as sownin
Table 3, where row and column totals are dso shown: n, ny, rnp, N;, and N,. The analysis could be
generalized to include multiple quality fadors, if necessary; in this case, the Contingency Table
would have more than two rows.

In additionto courting moduesin Table 3, we must also court the quality fador (e.g., drcount)
that isincorredly classfied. Thisis shown as Remaining Fador, RF, inthe ACCEPT column. Thisis
the quality fador court onmoduesthat shoud have beenrgeded. Also shownis Tota Fador, TF,
the total quality fador court onall the modues in the sample (i.e., the sum of drcount). Lastly we
show RFM (Remaining Fador Modues) that isthe court of modues with quality fador court >0
(i.e.,, modueswith Remaining Fador, RF).

Table 3 and subsequent equations show an examplevali dation,wherethe optima combination d



metricsfrom Table 2 andtheir criticd valuesfor arandom sample of 100modues (sample 1), from
the popuation of 1397,is prologue size (P) with a aiticd vaue of 38 and statements (S) with a
critica value of 26.Thislow value of statementsis understandable because the median valueinthe
builds analyzed is 23. There ae many small moduesthat cdl a subroutines, compute avalue, and
transfer control to another modue. Later we will explain hov we arived at this particular
combination d metrics as the optimal set.

3.2.2. Satistical criteria

Wevalidate aBDF statisticdly by demonstrating that it partitions Table 3in such away that C;1
and C,; are largerelative to Cy, and Cys. If thisisthe cae, alarge number of high quality modues
(e.g., modues with drcount=0) would have M;j<MC; and would be crredly clasdfied as high
quality. Similarly, alarge number of low quality modues(e.g., modueswith drcount>0) would have
M;;>MC; andwould be corredly classfied aslow quality. One measure of thedegreeto whichthisis
the caeisestimated by the chi-square () statistic [Conover 1971]. If computed x°cx (chi-square
at specified as) and if computed ac<as, then these results suggest that agiven BDF can discriminate
between high and low quality. However, because the y* test may not produce ®nsistent results
[Eman 1998, weuseit only asone of several indicaors of Discriminative Power. Other criteria ae
misclassficaionratesand, most important, appli caioncriteria(seebelow). We nate that the use of
chi-square andapha a gatisticd criteriaisindependent of the gplicaion(i.e., these aiteria wuld
be used whether the gplicaionis metrics or personngl management). Application criteria, onthe
other hand, such as Quality and I nspection (seebelow) are meaningful in the context of the metrics
applicaion.

3.2.2.1. Misclassification

We compute the degreeof misclasgficationin Table 3 by nating that idedly C;,=n;=N,, C;,=0,
C21=0, Coo=np,=N,. The extent that thisisnat the caeisestimated by Type 1 misclasgficaions(i.e.,
themodu e has Low Quality andthe metrics"say" it has High Quality) and Type 2 misclassfications
(i.e., the modue has High Quality and the metrics "say" it has Low Quality). Thus, we define the
foll owing measures of misclassficaion:

Propartion d modues of Type 1: P1=Csi/n (4)
For the example, P,=(1/100*100=1%.

Propation d modues of Type 2: P,=Cy2/n )
P,=(27/100*100=27%.

Propation d modues of Type 1+Type 2: P15=(C21+C12)/n (6)
P1,=((1+27)/100*100=28%.



Table 3. Validation Contingency Table
/\(MijSMCj) V(Mij>MCj)
P.<38A\S<26 P>38VS>26
ngh Quallty C11=30 C=27 n=57
F<FC Type 2
drcount=0
Low Quallty C=1 Cy=42 =43
F>FC Type 1l
drcount>0
N.=31 N»,=69 n=100
RF=1, RFM=1 TF=192
ACCEPT REJECT

3.2.3. Application criteria

It isinsufficient to validate only with resped to statisticd criteria. Inthefinal analysis, it isthe
performanceof the metricsin the gplicaioncontext that courts. Therefore, wevali date metricswith
resped to the goplicationcriteria: Quality and Inspection, which arerelated to quality achieved and
the st to adhieveit, respedively [Schneidewind 1997%; Schneidewind 19971. At the Design phase
of Build 2in Figure 1, we predict that the quality computed by equations (7)--(12) will bedelivered
to maintenance, asuming that the modues that are rgeded by the quality control process are
inspeded andtested andthat the problemsthat arefoundare wrreded. Furthermore, we predict that
the degreeof inspedion computed by equation (13) will be required to achieve this quality.

3.2.3.1. Quality

First, we estimate the aility of the metricsto corredly classfy quality, given that the quality is
known to be low:

LQC: Propation d low quality (e.g., drcount>0) modues corredly classfied=C,,/n, @)
For the example, LQC=(42/43)*100=97.M%.

Seoond,we estimatethe ailit y of the metricsto corredly classfy quality, given that the BDF has
classfied modues as ACCEPT. Thisis dore by summing quality fador in the ACCEPT columnin



Table 3 to produce Remaining Fador, RF (e.g., remaining drcount), given by equation (8).
RF=3 F, FOR((F, > FC)O(M;; £ MC1)...0(M; MC)..0(Min SMCw),  forj=1,..m (8)
i=1

Thisis the sum of quality fador F; (e.g., drcount) on modues incorredly classfied as high
quality because (F>FC)A(M;;<MC;) for these modues. We asaume that the dements of F are
additive andthat the lower itsvalue, the higher the quality of themodue. Thiswould bethe caefor
any quality fador of interest in thisanalysis: discrepancy report court, error count, fault count, and
faillure coun.

We estimate the propation d RF by equation (9), where TF isthe total quality fador F; for the
Validation Sample.

RFP=RF/TF ©)

For the example, from Table 3 thereisaone DR on ore modue that isincorredly classfied (i.e.,
RF=1). Thetotal number of DRsfor the 100moduesis 192. Therefore, RFP=(1/192)*100=.52%.

We estimate the density of RF by equation (10).

RFD=RF/n (20
For the example, RFD=1/100=.01 drcount/modue.

In addition, we estimate the curt of modu esthat wereincorredly classfied becaise they have
DRs written against them (i.e., have F>FC). The propation remaining RMP is given by equation
(11). Notethat RMP=P; (propation d Type 1 misclasgficaions) when FC=0(i.e., theonly modues
with F>0 will beinthe C,; cdl); seeTable 3.

RMP=RFM/n, (11

where RFM is given by:

RFM = CO_EJlNT FOR ((F > 0)0(Mi: £ MCY)...0(M;< MC))-..0(Mim £MCw)), forj=1,..m. (12

For the example, there is one acceted modue with ore DR, so RMP=(1/100*100=1%.
3.2.3.2. Inspection

Inspedion is one of the asts of high quality. We ae interested in weighing inspedion
requirements (i.e., percent of modues rejeded and subjeded to detail ed inspedion) against the
quality that is achieved, for various BDFs. We estimate inspedion requirements by nating that all
moduesinthe REJECT column of Table 3 must be inspeded; thisisthe wurt C,,+Cs,. Thus, the
propartion d modues that must be inspeded is given by:



|:(C12+C22)/n (13)
For the example, 1=((27+42)/100*100=69% and the percentage acceted is 1-1 = 31%.
3.2.4. Summary of validation results

The results of the validation example ae summarized in Table 4. The properties of dominance
and concordance are evident inthese validationresultsandin ather sampleswe have analyzed from
thisdata. That is, apaint isreadted in adding metrics where Discriminative Power isnot increased
because: 1) the mntribution d the dominant metricsin corredly classfying quality hasarealy taken
effed and 2 additional metricsessentially repli caethe dassficationresultsof thedominant metrics
-- the concordance effed. This result is due to the property of the BDF used as an OR function,
which will cause amodue to be rgeded if only one of the modue's metrics exceals its criticd
value. These dfeds can orly be observed if amarginal analysisis performed, where metrics are
added to the set one-by-one and the cdculations shown in Table 4 are made dter ead metric is
added. For eat added metric, its effed is evaluated with resped to bah statistica and applicaion
criteria. In addition, asuitable stoppng rule must be used to know when to stop adding metrics (see
the next sedion).



Table 4. Discriminative Power Validity Evaluation (Sample 1, =100 modues)

Critical Values Statistical Criteria Application Criteria

Metric Set P| S | E1| N | P | P | y% lacfory’| LQC RFP RMP |

% | % % | % | % %

P 38 2 | 21 |33.2/8.4x10°| 95.3 1.56| 2 62

P,S 38 | 26 1 | 27 267 24x107| 97.7 | 052| 1 69

P,SE1 38 | 26 | 10 1 | 30 22.52.1x10°| 97.7 | 0.52| 1 72
K-SDistance  |0.585/0.5570.4920.487

P. prologue size, S: statements, E1: etal, N: nodes

3.3. Sage 3: Apply a stopping rule for adding metrics

Onerulefor stoppng the aldition d metricsto aBDF isto qut when RFP nolonger deaeases
asmetrics are added. Thisisthe maximumquality rule. Thisruleisill ustrated in Table 4. When a
third metric, etal(El), is added, thereis no deaease in RFP and RMP nor is there an increase in
LQC. Ifitisimportant to strike abal ancebetween quality and cost (i.e., between RFPand|), we add
metricsuntil theratio of therelative dhangein RFPtotherelative changein | ismaximum, asgiven
by the Quality Inspection Ratio (QIR) in equation (14), wherei refers to the previous RFP and I:

QIR=(|ARFP V/RFP)/(ALL) (14)

For the example, QIR(P-P,S)=((1.52-1.560)/1.56)/((69-62)/62)=5.90. This is the value of QIR in
going from one metric prologue size (P) to two metrics (P,S), adding statements (S).

Also, QIR(P,S-P,S,E1)=0. Thisisthevalueof QIR in going from two metrics (P,S) to threemetrics
(P,S, E1), adding etal (E1).

Therefore, we stop adding metrics after statements has been added. In this particular case, equation
(13) produces the same metric set as the maximum quality rule.

4. Comparison of validation with application results

In order to compare vali dationwith appli cationresults, wefirst show how the Contingency Table
looks at the Design phese of Build 2in Figure 1, when orly the metrics M; andtheir criticd values
MC; are avail able. Thisis shownin Table5, wherethe"?" indicatesthat the quality fadtor dataF; are
not avail able when the vali dated metrics are used in the quality control function d Build 2.During
the Design phese of Build 2, modues are dassfied acording to the aiteria that have been
described. A seand dgjoint randam sample of 100 modues (sample 2) was used to ill ustrate the
process Whereas 31 and 69modues were acceted and rejeded, respedively, during Build 1, 40
and 60modues were acceted and rgeded, respedively, duing Build 2. The rejeded modues




would be given priority attention (i.e., subjeded to rigorous inspedion).

Table 5. Applicaion Contingency Table
/\(MijSMCj) \/(Mij>MCj)
P.<38AS <26 P>38VS>26
High Quality Type 2
? 5 ? ?
Low Quality Typel
? ? ? ?
N,=40 N»>=60 n=100
ACCEPT REJECT

A comparison d the Validation Sample (Build 1) with the Appli cation Samples (Build 2) with
resped to statisticd criteriais siownin Table 6. A comparison d the Vali dation Sample with the
Applicaion Samples with resped to application criteriais sown in Tables 7 and 8. As we have
mentioned, orly metrics datais avail able when the vali dated metrics are goplied duing the Design
phase of Build 2in Figure 1. However, to have abasisfor comparisonwith the validationresults, we
computed the values shown in Tables 6, 7, and 8 retrospectively (i.e., after Build 2was far enough
along to be aleto collea al of the quality fador data & the conclusion d the Test phase). The
valuesfor samples 2, 3,and 4in Tables 7 and 8are the actual quality delivered to maintenance, as
shown duing the Test phase of Figure 1. Thereader shoud compare theresults of Samples2, 3,and
4 with those of Sample 1 in the tables. As the acarracy of classficaion d low quality software
increases, the acarracy of classfying high quality software deaeases andinspedion cost increases.
However, the moreimportant considerationisto prevent low quality software from being deli vered
to maintenance, particularly in safety criticd systemslike the Space Shuittle.

Table 6. Statisticd CriteriaP1 and P2 for Metric Set: P,S
Validation (Sample 1) vs. Applicaion (Samples 2, 3,and 4), r=100modues

P1 : Percentage Type 1 Misclasdficaion P2: Percentage Type 2 Misclassficaion

Samplel | Sample2 | Sample3 | Sample4 | Samplel | Sample2 | Sample3 | Sample4

1.0 1.0 4.0 3.0 27.0 24.0 18.0 22.0




Table 7. Application Criteria LQC and RFP for Metric Set: P,S
Vdidation (Sample 1) vs. Applicaion (Samples 2, 3,and 4), r=100modues
LQC: Pecentage of low quality modues| RFP. Percentage of quality fador (drcount)
(drcount>0) corredly classfied incorredly classfied
Samplel | Sample2 | Sample3 | Sample4 || Samplel | Sample2 | Sample3 | Sample4
97.7 97.3 91.1 93.2 0.52 .62 3.01 1.50
Table 8. Application CriteriaRFD and | for Metric Set: P,S
Vdidation (Sample 1) vs. Applicaion (Samples 2, 3,and 4), r=100modues
RFD: Density of quality fador (drcount/modue) | I: Percentage of moduesinspeded
incorredly clasgfied
Samplel | Sample2 | Sample3 | Sample4 | Samplel | Sample2 | Sample3 | Sample4
.01 .01 .05 .03 69 60 59 63

5. Quality point and confidence interval estimates

In addition to the quantities in Tables 3 -- 8, there ae other quantities of interest, such as
propation d modues with zero and nonzero drcount and their confidence intervals. For these
guantiti es, software devel opers and maintainers are provided with bah pant estimatesandinterval
estimates of the range in which the adua quality values are likely to fal. Thus, they are dle to
anticipate rather than reac to quality problems. For example, estimates obtained from Build 1in
Figure 1 are used to predict the quality of software that would be delivered to maintenance if
corredive ationwere nat taken. Thisadionisthe quality control step of the Design Phase of Build
2 where modues are rejeded and subjeded to detail ed inspedion and test if their metrics values
exced the aiticd vaues. In addition, the estimates provide indicaions of resourcelevelsthat are
neealed to achieve quality goals. For example, if the predicted quality of the softwarewerelower than
the spedfied quality, the difference would be an indicaion d increased usage of personrel and
computer time during inspedion and testing, respedively.

A benefit of using confidencelimitsisthat they provide protedion against prediction error. A
prediction error could arise because the very ad of measuring and predicting may affed the
predictions-- the Heisenberg Principle. For example, prologuesize, thereaord o change history, has
provento be agood predictor of quality. However, if the softwareischanged in resporseto problems
observed duing the quality control function,thereby adding to the change history andprologuesize,
this effed would tend to make the original predictions optimistic. Another protedion against
prediction error isto periodicaly repea the predictions as the software evolves over thelife g/cle.



The normal approximationto the binomial distributionis used to estimate the confidencelimits
of the propations. Thisdistributionis used becaise we aeinterested in estimating the propations
of modues and drcount that fall into ore of two categories (i.e.,, amodue is either acceted or
rejeded or DRsare either present or not present onamodue). The normal approximationgivesthe
mean propation p of modues or DRsthat fall into ore of two caegories andthe confidencelimits
are afunction d p.

The point and confidencelimit estimatesfor modue andquality fador courtsusetermsthat are
defined below. Where it is necessary to dstinguish validation from applicaion guantities in the
computations, we use primed naation for the latter.

n: number of moduesintheValidationand Applicaionsamples (seeTables3 and 5,respedively)
N1: number of modues acceted in the Validation Sample of Build 1

N2: number of modues rgjeded in the Validation Sample of Build 1

N:": number of modues acceted in the Applicaion Samples of Build 2

N2": number of modues rejeded in the Application Samples of Build 2

5.1. Module counts

Modue murt estimates are made using the Validation Sample in the Test Phase of Build 1.
These estimates are gopli ed to the Appli cation Samplesin the Design Phase of Build 2 and compared
with adual valuesin Table 9.

Thepropation d all modueswith quality fador F>0 (e.g., drcount>0 onmoduei) intheentire
Validation Sampleis given by equation (15):

P, = (CO_QNT FOR F>0)/n (15

where COUNT (i)=COUNT (i-1)+1 FOR expressontrue and COUNT(i)=COUNT(i-1), otherwise;
COUNT(0)=0. We use this equation to estimate p,’ in the Appli cation samples. We obtain the two-
sided confidenceinterval of p, from expresson (16). We use this expressonto estimate the lower
and upper limitsof p,' in the Applicaion Samples:

pnizam/w (16)

As shownin Table9, wewould exped the propation d all modueswith drcount>0 in maintenance
to be between 33.34-52.®%6 unlesscorredive adionistakento maketheselimitslower. If corredive
adionistaken, thisestimate providesbounds onthe resources -- personnel and computer time-- that
would be required to insped, corred, and test defedive modues.



The propation d accepted modueswith quality fador F>0 (e.g., drcount>0 onmoduei) inthe
Validation Sampleis given by equation (17), where RFM is obtained from equation (12):

pN;=RFM/N; (17)

We use this equation to estimate pN;' in the Applicaion samples. We obtain the one-sided upper
confidencelimit of pN; from expresson (18). We usethis expressonto estimate the upper limit of
pN;' in the Applicaion Samples:

(le)(l‘ le)

PN, + Z,
! N1

(18

As down in Table 9, we would exped the propation d accepted modues with drcount>0 in
maintenanceto be < 8.4%% astheresult of thequality control eff ort in the Design Phase of Build 2.

Thepropation d rejected modueswith quality fador F>0 (e.g., drcount>0 onmoduei) inthe
Validation Sampleis given by equation (19):

PN2=((Pn) (n)-(RFM))/N; (19

Thisisequal to: (all modueswith quality fador F>0) minus (accepted modueswith quality fador
F>0), divided by the number of rejeded modues. We use this equation to estimate pN;' in the
Applicaion Samples. We obtain the one-sided lower confidencelimit of pN, from expresson (20).
We use this expresson to estimate the lower limit of pN,'in the Applicaion Samples:

(pNz)(l' pNz)

(20)
N2

PN, - Z,

As down in Table 9, we would exped the propation d rejected modues with drcount>0 in
maintenanceto be >51.26% astheresult of the quality control eff ort in the Design Phase of Build 2.

5.2. Quality factor counts

Quality fador proportion court estimatesin (21), ..., (24) aremade using the Vali dation Sample
in the Test Phase of Build 1.Quality fador total court estimatesin (25) and (26) use datafrom the
Validation Sample and datathat isavail ablein the Applicaion Samplesin the Design Phase of Build
2: number of modues accepted, N;' and nunber of modues rejected, N,'. These estimates are
applied to the Appli cation Samplesin the Design Phase of Build 2and compared with adual values
in Tables9 and 10.

The propation d quality fador Fi>0 (e.g., drcount>0) that occurs on accepted moduesin the
Validation Sampleis given by equation (21):



d;=RF/TF (21

where RF is obtained from equation (8) and TF is the total quality fador F for the Validation
Sample. We use this equation to estimate d;' in the Appli cation samples. We obtain the one-sided
upper confidencelimit of d; from expresson(22). We usethisexpressionto estimate the upper limit
of d;’ in the Application Samples:

(d)(1-dy
thtZq BEE (22

As down in Table 9, we would exped the propation o drcount>0 on accepted modues in
maintenanceto be < 1.38% astheresult of the quality control effort in the Design Phase of Build 2.

The propation d qudity fador Fi>0 (e.g., drcount>0) that occurs on rejected moduesin the
Validation Sampleis given by equation (23):

d2:1-d1 (23)
We use this equation to estimate d,' in the Applicaion Samples. We obtain the one-sided lower

confidencelimit of d,from expresson(24). We usethisexpressonto estimatethelower limit of d'
in the Applicaion Samples:

5 [(d2)(1-d)
d2 Zu TF (24)

As sown in Table 9, we would exped the propation d drcount>0 on rejected modues in
maintenanceto be > 98.8% astheresult of the quality control eff ort in the Design Phase of Build 2.

Thetotal quality fador Fi>0 (e.g., drcount>0) that occurs onaccepted moduesintheValidation
Sampleisgiven by equation (25):

D1=(RF/N1)(Ny) (29)

We use this equation as a predictor of D;' in the Application Samples. As siown in Table 10, we
would exped the total drcount onaccepted moduesin maintenanceto be 1.29, 1.32and 1.19for
Applicaion Samples2, 3,and 4,respedively. Thereasonfor thethree etimates of Sample 1 isthat
eat sample has adifferent number of accepted modues N;' in equation (25).

The total qudity fador of Fi>0 (e.g., drcount>0) that occurs on rejected modues in the
Validation Sampleis given by equation (26):

D2=((TF-RF)/N2)(N2) (26)

We use this equation as a predictor of D,' in the Applicaion Samples. As siown in Table 10, we
would exped thetotal drcount onrejected moduesin maintenancetobe166.1, 163.3and 174.4or



ApplicaionSamples2, 3,and 4,respedively. Thereasonfor thethree etimates of Sample 1 isthat
eat sample has adifferent number of rejected modues N,' in equation (26).

Ten of the adual valuesout of thefifteen casesin Table 9 fall within the confidencelimits. The
averagerelative eror aaoss $x comparisons between Sample 1 versusSamples2, 3, 4inTable 10is
28.9%6 with astandard deviation d 30.76. Variationin resultsmay be caused by sampling error (i.e.,
in order to oltain dgjoint samples, it was necessary to sample withou replacement).



Table 9. Validation Predictions (Sample 1

vs. Applicaion Actual Values (Samples 2, 3, and 4)

Point 95% Actua Values
Estimates Confidence
(Sample 1) Limits Sample 2 Sample 3 Sample 4
(Sample 1)

pn" 43.0% 33.3%-52.7% 37.0% 45.0% 44.0%
propartion of all modules with
drcount>0
pN;": 3.22% LE 8.45% 2.50% 9.76% 8.11%
propartion of accepted modules
with drcount>0
pN" 60.9% GE 51.2% 60.0% 69.5% 65.1%
propartion of rejected modules with
drcount>0
dy" 52% LE 1.38% .62% 3.01% 1.50%
propartion of drcount >0 on
accepted modules
dy" 99.5% GE 98.6% 99.4% 97.0% 98.5%
propartion of drcount>0on rejected
modules

Table 10. Validation Actual Values and Predictions (Sample 1) vs. Application Actual Values (Samples 2, 3, and 4)

Actual Estimate Actual Estimate Actual Estimate Actual
Sample 1 Sample 1 Sample 2 Sample 1 Sample 3 Sample 1 Sample 4
D" 1 1.29 1 1.32 5 1.19
total drcount
on accepted
modules
D," 191 1661 160 1633 161 1744 197
total drcount
on rejected
modules

6. Comparison of Boolean and linear discriminant functions

We compared the quality classfying ability during vaidation d the Boolean discriminant
function (BDF) with an dternate method the linea discriminant function (LDF) consisting of the
summation aaoss metrics of the product of standardized metrics variables and standardized
clasgficaion coefficients [Jolbson 1992. For the BDF, we used the optimal metrics st -- prologue
size and statements -- and results obtained from Table 4. For the LDF, we used the set of nine




metricslisted in Table 11 and amarginal anaysisthat yielded the highest Discriminative Power as
measured by the Eigenvalue and . The comparisonis siown in Table 11.In the comparison, we
used bah statisticd and application criteria. In the gplicaion caegory, we did na compute RFP
and RMP for the LDF as we did in Table 4. Unlike the BDF where equations (8) and (9) court
quality fador and (11) and (12) court modues that are misclassfied into the ACCEPT caegory,
thereisnoalgorithm for making these mmputationsfor the LDF. It would have been recessary to
compare the metrics and drcount for each modue with the LDF to determine how the metrics
clasgfied the modu es and drcount. However, agoodcomparisonisobtained by using LQC. Inthis
example, Table 10showsthat the BDF doesabetter job d classfying thelow quality modues(e.g.,
lower value of P; and higher value of LQC) andthat LDF does a better job o classfying the high
quality modues (e.g., lower values of P, and ). As gated in Sedion 1,thereasonfor thisresult is
that BDFs make fewer mistakes in classfying software that is low quality than is the cae when
linea vedors of metrics are used because the aiticd values provide alditional information for
discriminating quality. Theimplicaionsfor applying the vali dated metrics during the quality control
function d the Design Phase of Build 2is that the BDF would yield higher quality and the LDF
would yield lower cost. Our preferenceisthe BDF in asafety criticd system like the Space Shuttle,
where high quality software is the paramourt objedive.

Table 11. Comparison d Bodean Discriminant Function (BDF) with Linea
Discriminant Function (LDF)
Validity Evaluation (Sample 1, =100 modues)

Statisticd Criteria Applicaion

Criteria

Function Metric PL | P | o% | acfory’c | LQC |
Set % | % % %

BDF P,S 1.0 | 27.0| 26.7 | 2.4x10" | 97.7 | 69.0
LDF 9 Metrics | 9.0 | 9.0 | 37.5 ~0 79.1 | 43.0

LDF Metric Set (counts per module): Halstead etal, eta2, n1, and n2; lines of
code, prologue size, nocks, paths, and maximum path.

7. Metric characteristics of failed modules

Further evidence of the model's ability to identify low quality during development is shownin
Table 12. This table shows the 15 modues that fail ed during maintenance of the 1397modues of
Build 2inFigure 1, wherethe severity of the 10fail uresdeaeasesfrom 2to 4.Inthe cae of failure
# 7,six modues caused thisfail ure. Thetable dso showsthe modu e metrics and vali dated criticd
valuesthat were obtained during Build 1.For all failled modues, one or more of their metric values



excedl the aiticd value. Metric valuesin italics would fail to rejed these modues during quality
control of the Design phese of Build 2. However, this would be cmpensated for by the metric
prologue size that would have @rredly rejeded al of these modues. To ill ustrate the differencein
metric charaderisticsof thefailled moduesversusall themoduesof Build 2,the means of eat were
computed. The difference in means is significant at a<.05. As this example ill ustrates, athowgh a
metrics program can aert the developer to the posshility of unreliable software, it canna prevent
failuresfrom occurring. In thisexample, theinspedionandtest processfail ed to findand corred the
problems before Build 2 entered maintenance



Table 12. Metric Charaderistics of Failed Modues

Falure | Severity | Modue | prologue | statements | etal noces | drcount
Number Level ID Size
1 2 13 493 738 46 394 22
2 3 974 299 192 31 98 2
3 2 1286 115 110 28 48 5
4 3 711 205 1 5 96 6
5 3 1300 82 3 8 20 1
6 3 515 851 875 44 529 15
7 2 464 69 15 16 12 4
7 2 465 76 30 24 21 4
7 2 466 68 15 16 12 4
7 2 467 72 30 24 21 2
7 2 468 153 10 11 75 3
7 2 472 100 1 6 40 1
8 4 555 943 819 34 174 26
9 3 904 122 128 31 64 1
10 4 882 157 107 30 51 5
Criticd Vaue 38 26 10 11 0
Failed Modues Mean 253.7 204.9 23.6 110.3 6.7
Build 2 Mean 134.6 70.2 16.7 28.4 1.8




8. Conclusions

A model wasdeveloped for controlli ng and predicting the quality of softwarethat isdeli vered by
development to maintenance. The model provides oftware devel opers and maintainers with bah
point estimates andinterval estimates of therangein which theadua quality valuesarelikely tofall.
Thus, they are derted to the neal to take @rredive adion.

It isimportant when vali dating and applying metricsto consider both statistica and applicaion
criteria and to measure the marginal contribution d ead metric in satisfying these aiteria. When
thisapproadhisused, we observethat apoint isreadied where adding metrics makesno contribution
to improving quality and the aost of using additional metricsincreases. This phenomenonisdueto
themetric dasdgficaion propertiesof dominance and concordance. Using our approadh, we adieved
an error of <3% in clasgfying quality fadors for the samples used in the study. The ratio of the
relative improvement in quality to the relative increase in inspedion cost is a new and effedive
stoppng rule for adding metrics.

Our Bodean dscriminant function (BDF) isanew type of discriminant for classfying software
quality to suppat an integrated approach to control and predictionin oremodel, and our applicaion
of Kolmogorov-Smirnov dstance is a new way to determine ametric's criticd value. On this
applicaion, the BDF, using two metrics, was superior to alinea discriminant function, tsing nine
metrics, in classfying low quality software; however, when used for quality control, the BDF
requires more inspedion.

Finally, with avery limited sample of modues that caused fail ures we foundthat the vali dated
metrics, if they had been applied to the modues that eventualy failed, would have aded as ealy
indicators of these fail ures.
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