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Abstract 
                                   

We develop a quality control and prediction model for improving the quality of software 
delivered by development to maintenance. This model identifies modules that require priority 
attention during development and maintenance by using Boolean discriminant functions. The model 
also predicts during development the quality that will be delivered to maintenance by using both 
point and confidence interval estimates of quality. We show that it is important to perform a 
marginal analysis when making a decision about how many metrics to include in a discriminant 
function. If many metrics are added at once, the contribution of individual metrics is obscured. Also, 
the marginal analysis provides an effective rule for deciding when to stop adding metrics. We also 
show that certain metrics are dominant in their effects on classifying quality and that additional 
metrics are not needed to increase the accuracy of classification. Related to this property of 
dominance is the property of concordance, which is the degree to which a set of metrics produces the 
same result in classifying software quality. A high value of concordance implies that additional 
metrics will not make a significant contribution to accurately classifying quality; hence, these metrics 
are redundant. Data from the Space Shuttle flight software are used to ill ustrate the model process.  



 

 

 

    
 

    
   

1. Introduction 

                             
A key problem in maintenance is to identify problems in the software during development before 

it reaches maintenance. To this end, we develop a quality control and prediction model that is used to 
identify modules that require priority attention during development and maintenance. This is 
accomplished in two activities: validation and application. Both activities occur during software 
development. Validation is an activity that is required in order to identify metrics that can identify 
low quality software that requires corrective action. Application is an activity during which validated 
metrics are applied to control and predict software quality. During validation, we use a build of the 
software that has been developed as the source of data to compute a discriminant function (i.e., a 
statistical method that is used to classify software quality) that we use to retrospectively classify and 
predict quality with specified accuracy, by build and module. Using this discriminant function during 
application, we classify and predict the quality of new software that is being developed. We make 
both point and confidence interval estimates of quality. This is the quality we expect to experience 
during maintenance.  

 
During validation, both quality factor (e.g., discrepancy reports of deviations between 

requirements and implementation) and software metrics (e.g., size, structural) data are available; 
during application, only the latter are available. During validation, we construct Boolean 
discriminant functions (BDFs) comprised of a set of metrics and their criti cal values (i.e., 
thresholds). A BDF is a Boolean function consisting of AND and OR operators, module metric 
values, and metric criti cal values that is used to classify the quality of software. A metric criti cal 
value is a value in the range of the metric, estimated by using the inverse of  the Kolmogorov-
Smirnov distance (to be explained) that provides a threshold  between two levels (e.g., high and low) 
of the quality of the software. We select the best BDF based on its abilit y to achieve the maximum 
relative incremental quality/cost ratio. During application, if at least one of the module's metrics has 
a value that exceeds its criti cal value, the module is identified as "high priority" (i.e., low quality); 
otherwise, it is identified as "low priority" (i.e., high quality). Our objective is to identify and correct 
quality problems during development so that a high quality product can be delivered to maintenance, 
as opposed to waiting until maintenance when the cost of correction would be high.  

  
We use nonparametric statistical methods to: 1) identify the criti cal values of the metrics and 2) 

find the optimal BDF based on its abilit y to satisfy both statistical and application criteria. Statistical 
criteria refer to the abilit y to correctly classify the software (i.e., classify high quality software as 
high quality and low quality software as low quality). Application criteria refer to the abilit y to 
achieve a high quality/cost ratio. A BDF compares a module

�
s metric value with the metric's criti cal 

value, for a set of metrics, in classifying the quality of the software. The BDFs provide good 
accuracy (i.e., � 3% error) for classifying quality factors. These functions make fewer mistakes in 
classifying software that is low quality than is the case when linear vectors of metrics are used 
because the criti cal values provide additional information for discriminating quality. In addition, we 
develop an effective stopping rule for adding metrics to the BDF that is based on quality/cost 
considerations. 

 
We show that it is important to perform a marginal analysis (i.e., identification of the incremental 

 contribution of each metric to improving quality) when making a decision about how many metrics 



 

 

 

    
 

    
   

to include in the discriminant function. If  many metrics are added to the set at once, the contribution 
of individual metrics is obscured. Also, the marginal analysis provides an effective rule for deciding 
when to stop adding metrics. We also show that certain metrics are dominant in their effects on 
classifying quality for Space Shuttle software (i.e., dominant metrics make fewer mistakes in 
classifying metrics than non-dominant ones) and that additional metrics are not needed to accurately 
classify quality. Related to the  property of dominance is the property of concordance, which is the 
degree to which a set of metrics produces the same result in classifying software quality. A high 
value of concordance implies that additional metrics will not make a significant contribution to 
accurately classifying quality; hence, these metrics are redundant.  

 
The contributions of this research are the following: 1) both statistical and application criteria 

should be used to determine which metrics and how many metrics should be used to classify 
maintenance quality; 2) a marginal analysis should be performed on each metric to determine 
whether its addition will i ncrease the quality/cost ratio; 3)  the Boolean discriminant function (BDF) 
is a new type of discriminant for classifying maintenance quality; 4) our application of Kolmogorov-
Smirnov (K-S) distance is a new way to determine a metric's criti cal value; and 5) we have 
developed a new stopping rule for adding metrics: the ratio of the relative improvement in quali ty to 
the relative increase in cost.   

 
1.1. Related research 

 
Our model is one of a class of models concerned with the classification of quality, sometimes 

referred to as the identification of fault-prone modules. Porter and Selby [1990] used classification 
trees to partition multiple metric value space so that a sequence of metrics and their criti cal values 
could be identified that were associated with either high quality or low quality software. This 
technique is closely related to our approach of identifying a set of metrics and their criti cal values 
that will satisfy quality and cost criteria. However, we use statistical analysis to make the 
identification. 

 
Briand et al. [1997] used logistic regression to classify modules as fault-prone or not fault-prone 

as a function of various object-oriented metrics. In another example of logistic regression, 
Khoshgoftaar and Allen [1997]used it to classify modules as fault-prone or not fault-prone as a 
function of faults, requirements, performance, and documentation software trouble report metrics. 
While one of our objectives is similar -- classify modules as either high quality or low quality -- we 
derive from this binary classification several predictive continuous quality and cost metrics. These 
metrics are used to predict the quali ty of software that will be delivered by development to 
maintenance and the cost of achieving it. 

 
 Khoshgoftaar et al. [1996a] used nonparametric discriminant analysis in each iteration of their 

military system project to predict fault-prone modules in the next iteration. This approach provided 
an advance indication of reliabilit y and the risk of implementing the next iteration. They also 
conducted a similar study involving a telecommunications application, again using nonparametric 
discriminant analysis, to classify modules as either fault-prone or not fault-prone [Khoshgoftaar  et 
al. [1996b]. Our approach has the same objective but we produce BDFs in terms of the original 
metrics as opposed to using density functions as discriminators.  

 



 

 

 

    
 

    
   

Khoshgoftaar and Allen [1998] have also developed models for ranking modules for reliabilit y 
improvement according to their degree of fault-proneness as opposed to whether  they are fault- 
prone or not. They used Alberg Diagrams [Ohlsson and Alberg 1996] that predict percentage of 
faults as a function of percentage of modules by ordering modules in decreasing order of faults and 
noting the cumulative number of faults corresponding to various percentages of modules. The 
imperative in safety criti cal systems like the Space Shuttle is to investigate all suspect modules 
because even the module with the lowest a priori reliabilit y risk could pose a safety hazard in 
operation. Our previous research showed a very high association between module failures and metric 
values that exceeded the criti cal values [Schneidewind 1995], as we will show later. 

 
The following topics are covered: Discriminative Power model, approach to validation, and 

quality control and prediction applications of the model, Section 2;  detailed description of validation 
methodology, Section 3; comparison of  validation with application results for quality control and 
prediction, Section 4; quality point and confidence interval estimates, Section 5; comparison of  BDF 
and linear discriminant function quality classification results, Section 6; development metric 
characteristics of modules that failed during maintenance, Section 7; and conclusions about the 
contributions of the model to quality control and prediction and the results obtained to date in 
applying it to the Space Shuttle, Section 8.  
  
2. Discriminative power model 

 
2.1. Discriminative power validation 
 

 Using our metrics validation methodology [IEEE 1998; Schneidewind 1992], and the Space 
Shuttle flight software metrics and discrepancy reports (DRs), we validate metrics with respect to the 
quality factor drcount. This is the number of discrepancy reports written against a module. In brief, 
this involves conducting statistical tests to determine whether there is a high degree of association 
between drcount and candidate metrics. As shown in Figure 1, we validate metrics on one random 
sample (Validation Sample) of 100 modules from Build 1 and apply the validated metrics to three 
random samples (Application Samples) of 100 modules each from Build 2 that are both disjoint 
among themselves and from the Validation Sample, drawn from a population of 1397 modules of 
Space Shuttle flight software. Nikora and Munson argue for the need of  a measurement baseline 
against which evolving systems may be compared [Nikora and Munson 1998]. Our baseline is Build 
1 in Figure 1. The measurement results from Build 1 provide the data source for controlli ng and 
predicting the quality delivered to maintenance and for comparing predicted with actual quality, once 
the latter is known. Next, we define Discriminative Power. 
 
2.1.1. Discriminative power 
 
 Given the elements Mij of a matrix of n modules and m metrics (i.e., nm metric values), the 
elements MCj of a vector of m metric criti cal values, the elements Fi of a vector of n quality factor 
values, and scalar FC of quality factor criti cal value, M ij must be able to discriminate with respect to 
Fi, for a specified FC, as shown in the following relation: 
 
M ij > MCj �  Fi > FC and                 (1)   



 

 

 

    
 

    
   

M ij �  MCj �  Fi �  FC 
 � � � � 	 
 � � � 
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tests that are used for estimating the degree to which a set of metrics can correctly classify software 
quality. In other words, do the indicated metric relations imply corresponding quality factor relations 
in (1)? This criterion assesses whether MCj has suff icient Discriminative Power to be capable of 
distinguishing a set of high quality modules from a set of low quality modules. If this is the case, we 
use the criti cal values in Quality Control and Prediction described below. The validation process is 
ill ustrated in Figure 1, where the criti cal values MCj are produced in the Test phase of Build 1 by 
using the metrics Mij from the Design phase and the quality factor Fi (e.g., drcount) that is available 
in the Test phase. Discrepancy reports are written against the software throughout development but 
they are not significantly complete until the end of the Test phase for a build during which failures 
are observed. The counts of discrepancy reports and metrics that are associated with a module were 
collected at the completion of a build by a metrics analyzer, using the source code as input. If a 
discrepancy report involves multiple modules, it is counted against every module affected. The 
desired quality level is set by the choice of FC. The lower its value, the higher the quality 
requirement; conversely, the higher its value, the lower the requirement. A value of zero is 
appropriate for safety-criti cal systems like the Space Shuttle.  
 
 It is important to recognize that validation is performed retrospectively. That is, with both metrics 
M ij and quality factor Fi in hand for Build 1, we can evaluate how well the metrics would have 
performed if they had been applied to Build 1. If the metrics perform well , we say they are validated 
and it is our expectation that they will perform adequately when applied to Build 2. (i.e., not as well 
as when applied to Build 1 because of possible differences in module characteristics between Build 1 
and Build 2 but better than using unvalidated metrics). Next, we describe the application of the 
model to quality control and prediction. 

 
2.1.2. Quality control and prediction 
 

Quality control is the evaluation of modules with respect to predetermined criti cal values of 
metrics. The purpose of quality control is to allow software managers to identify software that does 
not meet quality requirements early in the development process so corrective action can be taken 
when the cost is low. Quality control is applied during the Design phase of Build 2 in Figure 1 to flag 
modules below quality limits for detailed inspection. The validated BDFs, comprised of the metrics 
M ij and their criti cal values MCj that are obtained from Build 1, are used to either accept or reject the 
modules of Build 2 [Schneidewind 1997a; Schneidewind 1997b]. At this point in the development of 
Build 2, only the metric data M ij and MCj are available.  

 
Quality predictions are used by the developer and maintainer to anticipate rather than react to 

quality problems. The predictions provide indications of the quality of the software that would be 
delivered to maintenance. Figure 1 shows the metrics controlli ng and predicting the quality of 
software that will be delivered to maintenance early in the development of Build 2. Accompanied by 
rigorous inspection and test, this process will result in improved quality of Build 2 and the software 
that is released to maintenance, of which Build 2 is a part. Once all of the quality factor data Fi (e.g., 
drcount) have been collected for Build 2, at the end of the Test phase as shown in Figure 1, the 
quality of Build 2 would be known. This, then, becomes the actual quality of Build 2 in the 



 

 

 

    
 

    
   

maintained software.   
  

3. Validation methodology 
 

The basis of this model is a methodology for validating BDFs and their criti cal values that have 
the abilit y to discriminate high quality from low quality. We use a three  stage process for selecting 
metrics for quality control and prediction: 1) compute criti cal values of the candidate metrics; 2) for 
the set of candidate metrics and criti cal values, find the optimal combination based on statistical and 
application criteria; and 3) apply a stopping rule for adding metrics. Table 1 provides a functional 
description of each stage. The three stages take place during the Test Phase of Build 1 of Figure 1, 
once all the quality factor data Fi (e.g., drcount) are available. The sections that follow provide the 
details of the statistical analysis for each stage.  

 
 

Table 1. Functional Description of Metrics Validation Process 
 

 
 
Statistical Test/ 

Procedure 

 
Purpose 

 
Result 

 
Stage 1 

 
 Kolmogorov-
Smirnov(K-S) 

 
Compute the critical values of the candidate 
metrics. 

 
Metrics ranked by K-S test 
results for input to Stage 2. 

 
Stage 2 

 
Contingency 

Table Analysis 

 
Use the critical values obtained from Stage 1 to 
form a set of BDFs. Use the BDFs to estimate 
quality and cost of inspection for each set of 
metrics, starting with one metric, and increasing 
by one until the stopping rule is satisfied. 

 
Metric sets with increasing 
numbers of metrics, each set 
with estimated quality and  cost 
of inspection. 

 
Stage 3 

 
Stopping Rule 

for Adding 
Metrics 

 

 
Add metrics to Stage 2 until the ratio of relative 
incremental quality to relative incremental 
inspection cost reaches a maximum.  

 
Validated BDFs and their 
critical values that provide the 
highest estimated quality relative 
to the estimated cost of 
inspection.  
 

 
3.1. Stage 1: compute critical values 
 

Critical values MCj are computed, using a new method we have developed, which is based on the 
Kolmogorov-Smirnov (K-S) test [Conover 1971]. This test was investigated for application to 
software metrics because of its abilit y to indicate the value of a metric (i.e., criti cal value) where 
maximum discrimination occurs between two samples of modules -- one of high quality and the 
other of low quality.  The method has consistently  yielded good results for controlli ng the quality of 
Space Shuttle software as our results will show.  The K-S test is exact for continuous distributions 
and conservative (i.e., the true alpha is less than the specified value) for discrete metrics data 
[Conover 1971]. In addition, the large range (e.g., 0 - 2316 for  prologue size) and fine granularity 
(e.g., units of one for prologue size) of the metrics data approximate continuous distributions. Thus, 
the K-S test is appropriate for analyzing metrics data.  

 



 

 

 

    
 

    
   

Table 2 shows the metric definitions, criti cal values MCj, and K-S distances for four metrics of 
the Validation Sample. These metrics were selected for analysis based on their relatively high K-S 
distance compared to other metrics that had been collected on the Space Shuttle. The K-S method 
tests whether the sample cumulative distribution functions (CDF) are from the same or different 
populations. The test statistic is the maximum vertical difference between the CDFs of two samples 
(e.g., the CDFs of M ij for drcount / FC and drcount>FC). 0 1 2 3 4 5 6 1 1 4 7 4 8 9 4 6 : : 6 ; 8 6 1 6 9 < 8 2 = 6 > 4 > ? @ A .005), 
the value of M ij corresponding to maximum CDF difference is used for MCj. This relationship is 
expressed in equation (2). This concept is ill ustrated in Figure 2, for the criti cal value of prologue 
size, where we show the CDFs for drcount=0 and drcount>0. In this example, the critical value is 38. 
This is the value of prologue size where there is the maximum difference between the CDFs. This is 
the value of prologue size where there is the maximum discrimination between high quality 
(drcount=0 curve) and low quality (drcount>0 curve). Metrics are added to the BDF in the order of 
their decreasing K-S Distance.  
 
K-S(MCj)=max{ [CDF(M ij/(Fi A FC)]-[CDF(M ij/(Fi>FC)]}                                          (2) 
 
  The history of changes (e.g., requirements, design, and code) and other activities (e.g., 
inspections, tests, and failure and fault observations) are recorded at the beginning of a module's 
li sting (i.e., prologue). The number of lines in this section is called the prologue size. Because this 
metric records the volatilit y of the software, it is  a very good quality discriminator, as our results 
will demonstrate. A statement is an executable statement in the Hal/S programming language that is 
used to code the Space Shuttle flight software. 
 

Table 2. Kolmogorov-Smirnov Distance for drcount=0 vs. drcount>0 
Validation Sample 1 (n=100 modules) 

 
 

Metric 

(symbol) 

Definition 
(counts per module) 

 
Critical 
Value 

 
Distance 

 @  
 
Rank 

 
prologue size (P) change history line count 

in module listing 

 
38 

 
0.585 

 
0.005 

 
1 

 
statements (S) executable statement count 

 
26 

 
0.557 

 
0.005 

 
2 

 
eta1 (E1) unique operator count 

 
10 

 
0.492 

 
0.005 

 
3 

 
nodes (N) node count 

(in control graph) 
 

 
11 

 
0.487 

 
0.005 

 
4 

 
3.2. Stage 2: perform contingency table analysis 
 
3.2.1. Validation contingency table 

For each BDF identified in Stage 1 we use the Contingency Table (see Table 3) and its 
accompanying B 2 statistic [Conover 1971] to further evaluate the abilit y of the functions to 
discriminate high quality from low quality, from both statistical (e.g., values of B 2 C D E F ) and 
application (e.g., abilit y of the metric set to correctly classify low quality modules) standpoints. In 



 

 

 

    
 

    
   

Table 3, MCj and FC classify modules into one of four categories. The left column contains modules 
where none of the metrics exceeds its criti cal value; this condition is expressed with a Boolean AND 
function of the metrics. This is the ACCEPT column, meaning that according to the classification 
decision made by the metrics, these modules have acceptable quality. The right column contains 
modules where at least one metric exceeds its criti cal value; this condition is expressed by a Boolean 
OR function of the metrics. This is the REJECT column, meaning that according to the classification 
decision made by the metrics, these modules have unacceptable quality. The top row contains 
modules that are high quality; these modules have a quality factor that does not exceed its criti cal 
value (e.g., drcount=0). The bottom row contains modules that are low quality; these modules have a 
quality factor that exceeds its criti cal value (e.g., drcount>0). 
 

Equation (3) gives the algorithms for making the cell counts of modules, using the BDFs of Fi 
and M ij that are computed over the n modules for m metrics. This equation is an implementation of 
the relation given in (1). 

 
for j=1,...,m, and where COUNT(i)=COUNT(i-1)+1 FOR Boolean expression true and 
COUNT(i)=COUNT(i-1), otherwise; COUNT(0)=0. 
  

The counts correspond to the cells of the Contingency Table (C11, C12, C21, and C22), as shown in 
Table 3, where row and column totals are also shown: n, n1, n2, N1, and N2. The analysis could be 
generalized to include multiple quality factors, if necessary; in this case, the Contingency Table 
would have more than two rows.  

 
In addition to counting modules in Table 3, we must also count the quality factor (e.g., drcount) 

that is incorrectly classified. This is shown as Remaining Factor, RF, in the ACCEPT column. This is 
the quality factor count on modules that should have been rejected. Also shown is Total Factor, TF, 
the total quality factor count on all the modules in the sample (i.e., the sum of drcount). Lastly we 
show RFM (Remaining Factor Modules) that is the count of modules with quality factor count >0 
(i.e., modules with Remaining Factor, RF). 
 

Table 3 and subsequent equations show an example validation, where the optimal combination of 

)))MC>M()...MC>M()...MC>M((FC)>F((  FOR  COUNT=C

 

))MCM()...MCM()...MCM(FC)>F((  FOR  COUNT=C

 

)))MC>M()...MC>M()...MC>M((FC)F((  FOR  COUNT=C

 

))MCM()...MCM()...MCM(FC)F((  FOR  COUNT=C

mimjij11ii

n

=1i
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mimjij11ii

n

=1i
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mimjij11ii

n

=1i
12

mimjij11ii

n

=1i
11
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metrics from Table 2 and their criti cal values for a random sample of 100 modules (sample 1), from 
the population of 1397, is prologue size (P) with a criti cal value of 38 and statements (S) with a 
criti cal value of 26. This low value of statements is understandable because the median value in the 
builds analyzed is 23. There are many small modules that call a subroutines, compute a value, and 
transfer control to another module. Later we will explain how we arrived at this particular 
combination of metrics as the optimal set. 
 
3.2.2. Statistical criteria 
 

We validate a BDF statistically by demonstrating that it partitions Table 3 in such a way that C11 
and C22 are large relative to C12 and C21. If this is the case, a large number of high quality modules 
(e.g., modules with drcount=0) would have M ij G MCj and would be correctly classified as high 
quality. Similarly, a large number of low quality modules (e.g., modules with drcount>0) would have 
M ij>MCj and would be correctly classified as low quality. One measure of the degree to which this is 
the case is estimated by the chi- H I J K L M N O 2P Q R S R T Q R T U V W X Y X Z [ \ ] ^ _ ] ` a b c U X d e f R [ g h 2

ci j 2
s (chi-square k l m n o p q r q o s t

su k v s q r p w x n y l o s t
cz { s, then these results suggest that a given BDF can discriminate 

between high | } ~ � � � � � | � � � � � � � � � � � � � � � � | � � � � � � � 2 test may not produce consistent results 
[Eman 1998], we use it only as one of several indicators of Discriminative Power. Other criteria are 
misclassification rates and, most important, application criteria (see below). We note that the use of 
chi-square and alpha as statistical criteria is independent of the application (i.e., these criteria could 
be used whether the application is metrics or personnel management). Application criteria, on the 
other hand, such as Quality and Inspection (see below) are meaningful in the context of the metrics 
application. 

 
3.2.2.1. Misclassification 
 

We compute the degree of misclassification in Table 3 by noting that ideally C11=n1=N1, C12=0, 
C21=0, C22=n2=N2. The extent that this is not the case is estimated by Type 1 misclassifications (i.e., 
the module has Low Quality and the metrics "say" it has High Quality) and Type 2 misclassifications 
(i.e., the module has High Quality and the metrics "say" it has Low Quality). Thus, we define the 
following measures of misclassification: 
 
Proportion of modules of Type 1: P1=C21/n            (4) 
For the example, P1=(1/100)*100=1%. 

 
Proportion of modules of Type 2: P2=C12/n            (5) 
P2=(27/100)*100=27%. 
 
Proportion of  modules of Type 1+Type 2: P12=(C21+C12)/n              (6) 
P12=((1+27)/100)*100=28%. 



 

 

 

    
 

    
   

 
 

Table 3. Validation Contingency Table 
 

 
 

      
 

 � (M ij � MCj)     

 Pi � 38� Si � 26 

�
(M ij>MCj)   

Pi>38
�

Si>26 

 
 

 
 

 
High Quality 

Fi � FC 
drcount=0 

 
C11=30 

 
   C12=27  
   Type 2 

 
 n1=57 

 
 
 

 
Low Quality 

Fi>FC 

drcount>0 
 
 
 

 
C21=1 

    Type 1   
   

 
      C22=42     

 
 n2=43  

 
 
 

 
   
 

 
 

 
N1=31 

RF=1, RFM=1 

 
N2=69 

 
n=100 

 TF=192 
                 
  
                 
                 
                 

     RFM 
=192 

 
 

 
 

 
ACCEPT 

 
REJECT 

 
 

 
 

            
 
3.2.3. Application criteria 
 

It is insuff icient to validate only with respect to statistical criteria. In the final analysis, it is the 
performance of the metrics in the application context that counts. Therefore, we validate metrics with 
respect to the application criteria: Quality and Inspection, which are related to quality achieved and 
the cost to achieve it, respectively [Schneidewind 1997a; Schneidewind 1997b]. At the Design phase 
of Build 2 in Figure 1, we predict that the quality computed by equations (7)--(12) will be delivered 
to maintenance, assuming that the modules that are rejected by the quality control process are 
inspected and tested and that the problems that are found are corrected. Furthermore, we predict that 
the degree of inspection  computed by equation (13) will be required to achieve this quality. 
 
3.2.3.1. Quality 
 

First, we estimate the abilit y of the metrics to correctly classify quality, given that the quality is 
known to be low: 
 
LQC: Proportion of low quality (e.g., drcount>0) modules correctly classified=C22/n2    (7) 
 
For the example, LQC=(42/43)*100=97.7%. 
 
 Second, we estimate the abilit y of the metrics to correctly classify quality, given that the BDF has 
classified modules as ACCEPT. This is done by summing quality factor in the ACCEPT column in 



 

 

 

    
 

    
   

Table 3 to produce Remaining Factor, RF (e.g., remaining drcount), given by equation (8).  

))MCM()...MCM()...MCM(FC)>F(( FOR F=RF mimjij11iii

n

1=i
≤∧≤∧≤∧∑ ,    for j=1,...,m   (8)  

  This is the sum of quality factor Fi (e.g., drcount) on modules incorrectly classified as high 

quality because (Fi>FC) � (M ij � MCj) for these modules. We assume that the elements of Fi are 
additive and that the lower its value, the higher the quality of the module. This would be the case for 
any quality factor of interest in this analysis: discrepancy report count, error count, fault count, and 
failure count.   

 
We estimate the proportion of RF by equation (9), where TF is the total quality factor Fi for the 

Validation Sample.  
 
RFP=RF/TF                    (9) 
 
For the example, from Table 3 there is a one DR on one module that is incorrectly classified (i.e., 
RF=1). The total number of DRs for the 100 modules is 192. Therefore, RFP=(1/192)*100=.52%.  
 

We estimate the density of RF by equation (10). 
 
RFD=RF/n                    (10) 
 
For the example, RFD=1/100=.01 drcount/module. 
 

In addition, we estimate the count of modules that were incorrectly classified because they have 
DRs written against them (i.e., have Fi>FC). The proportion remaining RMP is given by equation 
(11). Note that RMP=P1 (proportion of Type 1 misclassifications) when FC=0 (i.e., the only modules 
with Fi>0 will be in the C21 cell ); see Table 3. 
 
RMP=RFM/n,                    (11) 
 
where RFM is given by: 

For the example, there is one accepted module with one DR, so RMP=(1/100)*100=1%. 
 
3.2.3.2. Inspection 
 

Inspection is one of the costs of high quality. We are interested in weighing inspection 
requirements (i.e., percent of modules rejected and subjected to detailed inspection) against the 
quality that is achieved, for various BDFs. We estimate inspection requirements by noting that all 
modules in the REJECT  column of Table 3 must be inspected; this is the count C12+C22. Thus, the 
proportion of modules that must be inspected is given by: 

))MCM()...MCM()...MCM(0)>F((  FOR  COUNT=RFM mimjij11ii

n

1=i
≤∧≤∧≤∧ , for j=1,....m. (12) 

 



 

 

 

    
 

    
   

 
I=(C12+C22)/n                    (13) 
 
For the example, I=((27+42)/100)*100=69% and the percentage accepted is 1-I = 31%. 
 
3.2.4. Summary of validation results 
 

The results of the validation example are summarized in Table 4. The properties of dominance 
and concordance are evident in these validation results and in other samples we have analyzed from 
this data. That is, a point is reached in adding metrics where Discriminative Power is not increased 
because: 1) the contribution of the dominant metrics in correctly classifying quality has already taken 
effect and 2) additional metrics essentially replicate the classification results of the dominant metrics 
-- the concordance effect. This result is due to the property of the BDF used as an OR function, 
which will cause a module to be rejected if only one of the module's metrics exceeds its criti cal 
value. These effects can only be observed if a marginal analysis is performed, where  metrics are 
added to the set one-by-one and the calculations shown in Table 4 are made after each metric is 
added. For each added metric, its effect is evaluated with respect to both statistical and application 
criteria. In addition, a suitable stopping rule must be used to know when to stop adding metrics (see 
the next section). 



 

 

 

    
 

    
   

 
 

Table 4.  Discriminative Power Validity Evaluation (Sample 1, n=100 modules) 
 

  
Critical Values 

 
Statistical Criteria    

 
Application Criteria 

 
Metric Set 

 
 P 

 
S 

 
E1 

 
N 

 
P1   

% 

 

 

 

 

 

 

 

 
P2 
% 
 
 
  

%&% 

 �
2
c 

 �
c � � � �

2
c 

 

 
LQC  

% 
 

 
 RFP  

%  

 
RMP  

% 

 
 I 
% 

 
 P 

 
38 

 
 

 
 

 
 

 
2 

 
21 

 
33.2 

 
8.4x10-9 

 
95.3 

 
1.56 

 
2 

 
62  

 P,S 
 

38 
 

26 
 

 
 

 
 

1 
 

27 
 
26.7 

 
2.4x10-7 

 
97.7 

 
0.52 

 
1 

 
69  

 P,S,E1 
 

38 
 

26 
 

10 
 

 
 

1 
 

30 
 
22.5 

 
2.1x10-6 

 
97.7 

 
0.52 

 
1 

 
72  

 K-S Distance 
 
0.585 

 
0.557 

 
0.492 

 
0.487 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 P: prologue size, S: statements, E1: eta1, N: nodes 

 
3.3. Stage 3: Apply a stopping rule for adding metrics 
 

One rule for stopping the addition of metrics to a BDF is to quit when RFP no longer decreases 
as metrics are added. This is the maximum quality  rule. This rule is ill ustrated in Table 4. When a 
third metric, eta1(E1), is added, there is no decrease in RFP and RMP nor is there an increase in 
LQC. If it is important to strike a balance between quality and cost (i.e., between RFP and I), we add 
metrics until the ratio of  the relative change in RFP to the relative change in I is maximum, as given 
by the Quality Inspection Ratio (QIR) in equation (14), where i refers to the previous RFP and I:  

QIR=( � � �   ¡ ¢/RFPi £ ¤ ¥ ¦ § ¤ § i)                          (14)  

For the example, QIR(P̈ P,S)=(( ©.52-1.56 ©)/1.56)/((69-62)/62)=5.90. This is the value of QIR in 
going from one metric prologue size (P) to two metrics (P,S), adding statements (S).  
 
Also, QIR(P,S̈ P,S,E1)=0. This is the value of QIR in going from two metrics (P,S) to three metrics 
(P,S, E1), adding eta1 (E1). 
 
Therefore, we stop adding metrics after statements has been added. In this particular case, equation 
(13) produces the same metric set as the maximum quality rule.  
 
4. Comparison of validation with application results 
 

In order to compare validation with application results, we first show how the Contingency Table 
looks at the Design phase of Build 2 in Figure 1, when only the metrics Mij and their criti cal values 
MCj are available. This is shown in Table 5, where the "?" indicates that the quality factor data Fi are 
not available when the validated metrics are used in the quality control function of Build 2. During 
the Design phase of Build 2, modules are classified according to the criteria that have been 
described. A second disjoint random sample of 100 modules (sample 2) was used to ill ustrate the 
process. Whereas 31 and 69 modules were accepted and rejected, respectively, during Build 1, 40 
and 60 modules were accepted and rejected, respectively, during Build 2. The rejected modules 



 

 

 

    
 

    
   

would be given priority attention (i.e., subjected to rigorous inspection). 
 

 
Table 5. Application Contingency Table 

 
 

 
      
 

ª
(M ij « MCj)   

Pi « 38¬ Si « 26     
 

­
(M ij>MCj)   

Pi>38® Si>26 

 
 

 
 

 
High Quality  

  ? 
 

 
   ?     

 
 Type 2 

  ?  
 
 

 
 

 ?  

 
 
 

 
Low Quality 

  ? 
 

 
  Type 1 

   ?    

 
      

 ?       

 
 

 ?  

 
   
 

 
 

 
N1=40 

 
N2=60 

 
n=100 

 
 

 
 

 
ACCEPT 

 
REJECT 

 
 

 
 

 
A comparison of the Validation Sample (Build 1) with the Application Samples (Build 2) with 

respect to statistical criteria is shown in Table 6. A comparison of the Validation Sample with the 
Application Samples with respect to application criteria is shown in Tables 7 and 8. As we have 
mentioned, only metrics data is available when the validated metrics are applied during the Design 
phase of Build 2 in Figure 1. However, to have a basis for comparison with the validation results, we 
computed the values shown in Tables 6, 7, and 8 retrospectively (i.e., after Build 2 was far enough 
along to be able to collect all of the quality factor data at the conclusion of the Test phase). The 
values for samples 2, 3, and 4 in Tables 7 and 8 are the actual quality delivered to maintenance, as 
shown during the Test phase of Figure 1. The reader should compare the results of Samples 2, 3, and 
4 with those of Sample 1 in the tables. As the accuracy of classification of low quality software 
increases, the accuracy of classifying high quality software decreases and inspection cost increases. 
However, the more important consideration is to prevent low quality software from being delivered 
to maintenance, particularly in safety criti cal systems like the Space Shuttle.  
 

 
Table 6. Statistical Criteria P1 and P2 for Metric Set: P,S  

Validation (Sample 1) vs. Application (Samples 2, 3, and 4), n=100 modules  
  

P1 : Percentage Type 1 Misclassification 
 

P2: Percentage Type 2 Misclassification 
 
Sample 1 

 
Sample 2 

 
Sample 3 

 
Sample 4 

 
Sample 1 

 
Sample 2 

 
Sample 3 

 
Sample 4 

 
1.0 

 
1.0 

 
4.0 

 
3.0 

 
27.0 

 
24.0 

 
18.0 

 
22.0 

 



 

 

 

    
 

    
   

 
 

Table 7. Application Criteria LQC and RFP for Metric Set: P,S 
Validation (Sample 1) vs. Application (Samples 2, 3, and 4), n=100 modules  

 
LQC: Percentage of low quality modules 
(drcount>0) correctly classified 
 

 

 
RFP: Percentage of quality factor (drcount) 
incorrectly classified 

 
Sample 1 

 
Sample 2 

 

 
Sample 3 

 
Sample 4 

 
Sample 1 

 

 
Sample 2  

 

 
Sample 3 

 
Sample 4 

 
97.7 

 
97.3 

 
91.1 

 
93.2 

 
0.52 

 
.62 

 
3.01 

 
1.50 

 
 

Table 8. Application Criteria RFD and  I for Metric Set: P,S 
Validation (Sample 1) vs. Application (Samples 2, 3, and 4), n=100 modules 

 
RFD: Density of quality factor (drcount/module) 
incorrectly classified 

 
 I: Percentage of modules inspected 

 
Sample 1 

 
Sample 2 

 

 
Sample 3 

 
Sample 4 

69 

 
Sample 1 

 
Sample 2 

  
4 

 
Sample 3 

 
Sample 4 

 
.01 

 
.01 

 
.05 

 
.03 

 
69 

 
60 

 
59 

 
63 

 
5. Quality point and confidence interval estimates 
 

In addition to the quantities in Tables 3 -- 8, there are other quantities of interest, such as 
proportion of modules with zero and non-zero drcount and their confidence intervals. For these 
quantities, software developers and maintainers are provided with both point estimates and interval 
estimates of the range in which the actual quality values are likely to fall . Thus, they are able to 
anticipate rather than react to quality problems. For example, estimates obtained from Build 1 in 
Figure 1 are used to predict the quality of software that would be delivered to maintenance if 
corrective action were not taken. This action is the quality control step of the Design Phase of Build 
2 where modules are rejected and subjected to detailed inspection and test if their metrics values 
exceed the criti cal values. In addition, the estimates provide indications of resource levels that are 
needed to achieve quality goals. For example, if the predicted quality of the software were lower than 
the specified quality, the difference would be an indication of increased usage of personnel and 
computer time during inspection and testing, respectively.  

 
A benefit of using confidence limits is that they provide protection against prediction error. A 

prediction error could arise because the very act of measuring and predicting may affect the 
predictions -- the Heisenberg Principle. For example, prologue size, the record of change history, has 
proven to be a good predictor of quality. However, if the software is changed in response to problems 
observed during the quality control function, thereby adding to the change history and prologue size, 
this effect would tend to make the original predictions optimistic. Another protection against 
prediction error is to periodically repeat the predictions as the software evolves over the li fe cycle. 

 



 

 

 

    
 

    
   

The normal approximation to the binomial distribution is used to estimate the confidence limits 
of the proportions. This distribution is used because we are interested in estimating the proportions 
of modules and drcount that fall i nto one of two categories (i.e., a module is either accepted or 
rejected or DRs are either present or not present on a module). The normal approximation gives the 
mean proportion p of modules or DRs that fall i nto one of two categories and the confidence limits 
are a function of p. 

 
The point and confidence limit estimates for module and quality factor counts use terms that are 

defined below. Where it is necessary to distinguish validation from application quantities in the 
computations, we use primed notation for the latter.  

 
n: number of modules in the Validation and Application samples (see Tables 3 and 5, respectively) 
 
N1: number of modules accepted in the Validation Sample of Build 1  
 
N2: number of modules rejected in the Validation Sample of Build 1 
 
N1': number of modules accepted in the Application Samples of  Build 2  
 
N2': number of modules rejected in the Application Samples of Build 2 
 
5.1. Module counts 
 

Module count estimates are made using the Validation Sample in the Test Phase of Build 1. 
These estimates are applied to the Application Samples in the Design Phase of Build 2 and compared 
with actual values in Table 9.  
 
 The proportion of all modules with quality factor Fi>0 (e.g., drcount>0 on module i) in the entire 
Validation Sample is given by equation (15): 
 

/n0)>F  FOR  COUNT(=p i

n

1=i
n                (15) 

 
where COUNT(i)=COUNT(i-1)+1 FOR expression true and COUNT(i)=COUNT(i-1), otherwise; 
COUNT(0)=0. We use this equation to estimate pn' in the Application samples. We obtain the two-
sided confidence interval of pn from expression (16). We use this expression to estimate the lower 
and upper limits of pn'  in the Application Samples: 
 

n

)p-)(1p(
Zp nn

2/n α±                   (16)  

 
As shown in Table 9, we would expect the proportion of all modules with drcount>0 in maintenance 
to be between 33.3%-52.7% unless corrective action is taken to make these limits lower. If corrective 
action is taken, this estimate provides bounds on the resources -- personnel and computer time -- that 
would be required to inspect, correct, and test defective modules. 



 

 

 

    
 

    
   

 
The proportion of accepted modules with quality factor Fi>0 (e.g., drcount>0 on module i) in the 

Validation Sample is given by equation (17), where RFM is obtained from equation (12):  
 
pN1=RFM/N1                    (17) 

 
We use this equation to estimate pN1' in the Application samples. We obtain the one-sided upper 
confidence limit of pN1 from expression (18). We use this expression to estimate the upper limit of 
pN1' in the Application Samples: 
 

N

)pN-)(1pN(
Z+pN

1

11
1 α                  (18) 

 
As shown in Table 9, we would expect the proportion of accepted modules with drcount>0 in 
maintenance to be ̄  8.45% as the result of  the quality control effort in the Design Phase of Build 2. 

 
The proportion of rejected modules with quality factor Fi>0 (e.g., drcount>0 on module i) in the 

Validation Sample is given by equation (19):  
 
pN2=((pn)(n)-(RFM))/N2                 (19) 

 
This is equal to: (all modules with quality factor Fi>0) minus (accepted modules with quality factor 
Fi>0), divided by the number of rejected modules. We use this equation to estimate pN2' in the 
Application Samples. We obtain the one-sided lower confidence limit of pN2 from expression (20). 
We use this expression to estimate the lower limit of  pN2' in the Application Samples: 
 

N

)pN-)(1pN(
Z-pN

2

22
2 α                  (20)  

 
As shown in Table 9, we would expect the proportion of rejected modules with drcount>0 in 
maintenance to be ° 51.2%% as the result of the quality control effort in the Design Phase of Build 2. 
 
5.2. Quality factor counts 
 

Quality factor proportion count estimates in (21), ..., (24) are made using the Validation Sample 
in the Test Phase of Build 1. Quality factor  total count estimates in (25) and (26) use data from the 
Validation Sample and data that is available in the Application Samples in the Design Phase of Build 
2: number of modules accepted, N1' and number of modules rejected, N2'. These estimates are 
applied to the Application Samples in the Design Phase of Build 2 and compared with actual values 
in Tables 9 and 10. 
 

The proportion of quality factor Fi>0 (e.g., drcount>0) that occurs on accepted modules in the 
Validation Sample is given by equation (21): 
 



 

 

 

    
 

    
   

d1=RF/TF                     (21) 
 

where RF is obtained from equation (8) and TF is the total quality factor Fi for the Validation 
Sample. We use this equation to estimate d1' in the Application samples. We obtain the one-sided 
upper confidence limit of d1 from expression (22). We use this expression to estimate the upper limit 
of d1' in the Application Samples: 
 

TF

)d-)(1d(
Z+d

11
1 α                   (22) 

 
As shown in Table 9, we would expect the proportion of drcount>0 on accepted modules in 
maintenance to be ±  1.38% as the result of the quality control effort in the Design Phase of Build 2. 
   

The proportion of quality factor Fi>0 (e.g., drcount>0) that occurs on rejected modules in the 
Validation Sample is given by equation (23): 
 

d2=1-d1                     (23) 
 
We use this equation to estimate d2' in the Application Samples. We obtain the one-sided lower 
confidence limit of  d2 from expression (24). We use this expression to estimate the lower limit of  d2' 
in the Application Samples: 
 

TF

)d-)(1d(
Z-d

22
2 α                   (24) 

 
As shown in Table 9, we would expect the proportion of drcount>0 on rejected modules in 
maintenance to be ²  98.6% as the result of the quali ty control effort in the Design Phase of Build 2. 
  

The total quality factor Fi>0 (e.g., drcount>0) that occurs on accepted modules in the Validation 
Sample is given by equation (25): 
 
D1=(RF/N1)(N1')                   (25) 
 
We use this equation as a predictor of D1' in the Application Samples. As shown in Table 10, we 
would expect the total drcount on accepted modules in maintenance to be 1.29, 1.32, and 1.19 for 
Application Samples 2, 3, and 4, respectively. The reason for the three estimates of Sample 1 is that 
each sample has a different number of  accepted modules N1' in equation (25). 
 

The total quality factor of Fi>0 (e.g., drcount>0) that occurs on rejected modules in the 
Validation Sample is given by equation (26): 
 

D2=((TF-RF)/N2)(N2')                 (26) 
 
We use this equation as a predictor of D2' in the Application Samples. As shown in Table 10, we 
would expect the total drcount on rejected modules in maintenance to be 166.1, 163.3, and 174.4 for 



 

 

 

    
 

    
   

Application Samples 2, 3, and 4, respectively. The reason for the three estimates of Sample 1 is that 
each sample has a different number of  rejected modules N2' in equation (26). 
 

Ten of the actual values out of the fifteen cases in Table 9 fall within the confidence limits. The 
average relative error across six comparisons between Sample 1 versus Samples 2, 3, 4 in Table 10 is 
28.9% with a standard deviation of 30.7%. Variation in results may be caused by sampling error (i.e., 
in order to obtain disjoint samples, it was necessary to sample without replacement). 



 

 

 

    
 

    
   

 
 

Table 9. Validation Predictions (Sample 1) vs. Application Actual Values (Samples 2, 3, and 4) 
 

Actual Values 
 
 

 
Point 

Estimates 
(Sample 1) 

 
95% 

Confidence 
Limits 

(Sample 1) 

 
Sample 2 

 

 
Sample 3 

 

 
Sample 4 

 
 
pn':  
proportion of  all modules with 
drcount>0 

 
43.0% 

 
33.3%-52.7% 

 
37.0% 

 
45.0% 

 
44.0% 

 
pN1': 
proportion of accepted modules 
with drcount>0 

 
3.22% 

 
LE 8.45% 

 
2.50% 

 
9.76% 

 
8.11% 

 
pN2': 
proportion of rejected modules with 
drcount>0 

 
60.9% 

 
GE 51.2% 

 
60.0% 

 
69.5% 

 
65.1% 

 
d1': 
proportion of drcount >0 on 
accepted modules   

 
.52% 

 
LE 1.38% 

 
.62% 

 
3.01% 

 
1.50% 

 
d2': 
proportion of drcount>0on rejected 
modules  

 
99.5% 

 
GE 98.6% 

 
99.4% 

 
 

 
97.0% 

 
98.5% 

 
 
Table 10. Validation Actual Values and Predictions (Sample 1) vs. Application Actual Values (Samples 2, 3, and 4) 

 
 

 
Actual 

Sample 1 

 
Estimate 
Sample 1 

 
Actual 

Sample 2 
  2 

 
Estimate 
Sample 1 

 
Actual 

 Sample 3 

 
Estimate 
Sample 1 

  
4 

 
Actual 

Sample 4  
2 
  2 

 
D1': 
total drcount 
on accepted 
modules   

 
1 

 
1.29 

 
1 

 
1.32 

 
5 

 
1.19 

 
3 

 
D2': 
total drcount 
on rejected 
modules  

 
191 

 
166.1 

 

 
160 

 
163.3 

 
161 

 
174.4 

 
197 

 
6. Comparison of  Boolean and linear discriminant functions 
 

We compared the quality classifying abilit y during validation of the Boolean discriminant 
function (BDF) with an alternate method:  the linear discriminant function (LDF) consisting of the 
summation across metrics of the product of standardized metrics variables and standardized 
classification coeff icients [Jobson 1992]. For the BDF, we used the optimal metrics set -- prologue 
size and statements -- and results obtained from Table 4. For the LDF, we used the set of nine 



 

 

 

    
 

    
   

metrics li sted in Table 11 and a marginal analysis that yielded the highest Discriminative Power as 
measur ³ ´ µ ¶ · ¸ ³ ¹ º » ³ ¼ ½ ¾ ¿ À ³ ¾ ¼ ´ Á 2. The comparison is shown in Table 11. In the comparison, we 
used both statistical and application criteria. In the application category, we did not compute RFP 
and RMP for the LDF as we did in Table 4. Unlike the BDF where equations (8) and (9) count 
quality factor and (11) and (12) count modules that are misclassified into the ACCEPT category, 
there is no algorithm for making these computations for the LDF. It would have been  necessary  to 
compare the metrics and drcount for each module with the LDF to determine how the metrics 
classified the modules and drcount. However, a good comparison is obtained by using LQC. In this 
example, Table 10 shows that the BDF does a better job of classifying the low quality modules (e.g., 
lower value of  P1 and higher value of  LQC) and that LDF does a better job of classifying the high 
quality modules (e.g., lower values of P2 and I). As stated in Section 1, the reason for this result is 
that BDFs make fewer mistakes in classifying software that is low quality than is the case when 
linear vectors of metrics are used because the criti cal values provide additional information for 
discriminating quality. The implications for applying the validated metrics during the quality control 
function of the Design Phase of Build 2 is that the BDF would yield higher quality and the LDF 
would yield lower cost. Our preference is the BDF in a safety criti cal system like the Space Shuttle, 
where high quality software is the paramount objective.  

 
 

 
Table 11. Comparison of Boolean Discriminant Function (BDF) with Linear 

Discriminant Function (LDF) 
Validity Evaluation (Sample 1, n=100 modules) 

 
 

 
Statistical Criteria 

 
Application 

Criteria 
 
Function 

 
Metric 

 Set 

 
P1 
% 

 
P2 
% 
 
 
  

%&
% 

 Á 2
c 

 Â
c Ã Ä Å Á 2

c 
 

 
LQC  

% 
 

 
 I 
% 

 
BDF 

 
P,S 

 
1.0 

 
27.0 

 
26.7 

 
2.4x10-7 

 
97.7 

 
69.0 

 
LDF 

 
9 Metrics 

 
9.0 

 
9.0 

 
37.5 

 
≈0 

 
79.1 

 
43.0 
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code, prologue size, nodes, paths, and maximum path. 

 
7. Metric characteristics of failed modules 
 
 Further evidence of the model's abilit y to identify low quality during development is shown in 
Table 12. This table shows the 15 modules that failed during maintenance of the 1397 modules of 
Build 2 in Figure 1, where the severity of  the 10 failures decreases from 2 to 4. In the case of failure 
# 7, six modules caused this failure. The table also shows the module metrics and validated criti cal 
values that were obtained during Build 1. For all  failed modules, one or more of their metric values 



 

 

 

    
 

    
   

exceed the criti cal value. Metric values in italics would fail to reject these modules during quality 
control of the Design phase of Build 2. However, this would be compensated for by the metric 
prologue size that would have correctly rejected all of these modules. To ill ustrate the difference in 
metric characteristics of the failed modules versus all the modules of Build 2, the means of each were ï ð ñ ò ó ô õ ö ÷ ø ù õ ö ú û û õ ü õ ý ï õ ú ý ñ õ þ ý ÿ ú ÿ ÿ ú � ý ú û ú ï þ ý ô þ ô � � � � � � � � this example ill ustrates, although a 
metrics program can alert the developer to the possibilit y of unreliable software, it cannot prevent 
failures from occurring. In this example, the inspection and test process failed to find and correct the 
problems before Build 2 entered maintenance.   

 



 

 

 

    
 

    
   

 

Table 12. Metric Characteristics of Failed Modules 
 

 
Failure 
Number 

 
Severity 
Level 

 
Module 

ID 
 

 
prologue 

size 

 
statements 

 
eta1 

 
nodes 

 
drcount 

 
1 

 
2 

 
13 

 
493 

 
738 

 
46 

 
394 

 
22 

 
2 

 
3 

 
974 

 
299 

 
192 

 
31 

 
98 

 
2 

 
3 

 
2 

 
1286 

 
115 

 
110 

 
28 

 
48 

 
5 

 
4 

 
3 

 
711 

 
205 

 
1 

 
5 

 
96 

 
6 

 
5 

 
3 

 
1300 

 
82 

 
3 

 
8 

 
20 

 
1 

 
6 

 
3 

 
515 

 
851 

 
875 

 
44 

 
529 

 
15 

 
7 

 
2 

 
464 

 
69 

 
15 

 
16 

 
12 

 
4 

 
7 

 
2 

 
465 

 
76 

 
30 

 
24 

 
21 

 
4 

 
7 

 
2 

 
466 

 
68 

 
15 

 
16 

 
12 

 
4 

 
7 

 
2 

 
467 

 
72 

 
30 

 
24 

 
21 

 
2 

 
7 

 
2 

 
468 

 
153 

 
10 

 
11 

 
75 

 
3 

 
7 

 
2 

 
472 

 
100 

 
1 

 
6 

 
40 

 
1 

 
8 

 
4 

 
555 

 
943 

 
819 

 
34 

 
174 

 
26 

 
9 

 
3 

 
904 

 
122 

 
128 

 
31 

 
64 

 
1 

 
10 

 
4 

 
882 

 
157 

 
107 

 
30 

 
51 

 
5 

 
Critical Value  

 
38 

 
26 10 

 
11 

 
0 

 
Failed Modules Mean 

 
253.7 

 
204.9 

 
23.6 

 
110.3 

 
6.7 

 
Build 2 Mean  

 
1. In general, faults and failures 

have larger values of metrics 
and DR's in their associated 

modules than in the population 
of  modules (i.e., 1397 
modules). Thus, we can 

postulate metrics vectors, one 
relative to the other, where the 

one characterizes the failed 
software and the other 

characterizes the software as a 
whole (i.e., population).  

 
2. The failure  rate per failure,  

revised 

 
134.6 

 
70.2 

 
16.7 

 
28.4 

 
1.8 



 

 

 

    
 

    
   

8. Conclusions 
 

A model was developed for controlli ng and predicting the quality of software that is delivered by 
development to maintenance. The model provides software developers and maintainers with both 
point estimates and interval estimates of the range in which the actual quality values are likely to fall . 
Thus, they are alerted to the need to take corrective action.  

 
It is important when validating and applying metrics to consider both statistical and application 

criteria and to measure the marginal contribution of each metric in satisfying these criteria. When 
this approach is used, we observe that a point is reached where adding metrics makes no contribution 
to improving quality and the cost of using additional metrics increases. This phenomenon is due to 
the metric classification properties of dominance and concordance. Using our approach, we achieved 
an error of � 3% in classifying quality factors for the samples used in the study. The ratio of the 
relative improvement in quality to the relative increase in inspection cost is a new and effective 
stopping rule for adding metrics.  

 
Our Boolean discriminant function (BDF) is a new type of discriminant for classifying software 

quality to support an integrated approach to control and prediction in one model, and our application 
of Kolmogorov-Smirnov distance is a new way to determine a metric's criti cal value. On this 
application, the BDF, using two metrics, was superior to a linear discriminant function, using nine 
metrics, in classifying low quality software; however, when used for quality control, the BDF 
requires more inspection.  

 
Finally, with a very limited sample of modules that caused failures we found that the validated 

metrics, if they had been applied to the modules that eventually failed, would have acted as early 
indicators of these failures.   
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Figure 2.  K-S Test: Prologue Size CDF (sample 1, n=100 modules)
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